Suppr超能文献

移动遗传元件对 CRISPR-Cas 系统的抑制作用。

Inhibition of CRISPR-Cas systems by mobile genetic elements.

机构信息

RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.

Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.

出版信息

Curr Opin Microbiol. 2017 Jun;37:120-127. doi: 10.1016/j.mib.2017.06.003. Epub 2017 Jun 29.

Abstract

Clustered, regularly interspaced, short, palindromic repeats (CRISPR) loci, together with their CRISPR-associated (Cas) proteins, provide bacteria and archaea with adaptive immunity against invasion by bacteriophages, plasmids, and other mobile genetic elements. These host defenses impart selective pressure on phages and mobile elements to evolve countermeasures against CRISPR immunity. As a consequence of this pressure, phages and mobile elements have evolved 'anti-CRISPR' proteins that function as direct inhibitors of diverse CRISPR-Cas effector complexes. Some of these CRISPR-Cas complexes can be deployed as genome engineering platforms, and anti-CRISPRs could therefore be useful in exerting spatial, temporal, or conditional control over genome editing and related applications. Here we describe the discovery of anti-CRISPRs, the range of CRISPR-Cas systems that they inhibit, their mechanisms of action, and their potential utility in biotechnology.

摘要

成簇、规律间隔、短回文重复序列(CRISPR)位点及其相关的 CRISPR 关联(Cas)蛋白为细菌和古菌提供了针对噬菌体、质粒和其他移动遗传元件入侵的适应性免疫。这些宿主防御系统对噬菌体和移动元件施加选择性压力,促使它们进化出对抗 CRISPR 免疫的对策。作为这种压力的结果,噬菌体和移动元件进化出了“抗 CRISPR”蛋白,这些蛋白作为多种 CRISPR-Cas 效应复合物的直接抑制剂发挥作用。其中一些 CRISPR-Cas 复合物可用作基因组工程平台,因此抗 CRISPR 蛋白可用于对基因组编辑和相关应用进行空间、时间或条件控制。在这里,我们描述了抗 CRISPR 蛋白的发现、它们抑制的 CRISPR-Cas 系统的范围、它们的作用机制以及它们在生物技术中的潜在应用。

相似文献

1
Inhibition of CRISPR-Cas systems by mobile genetic elements.
Curr Opin Microbiol. 2017 Jun;37:120-127. doi: 10.1016/j.mib.2017.06.003. Epub 2017 Jun 29.
2
Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems.
CRISPR J. 2019 Feb;2(1):23-30. doi: 10.1089/crispr.2018.0052.
3
Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs.
FEMS Microbiol Lett. 2019 May 1;366(9). doi: 10.1093/femsle/fnz098.
5
Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type II Anti-CRISPR Proteins.
J Mol Biol. 2023 Apr 1;435(7):168041. doi: 10.1016/j.jmb.2023.168041. Epub 2023 Mar 8.
6
Anti-CRISPR: discovery, mechanism and function.
Nat Rev Microbiol. 2018 Jan;16(1):12-17. doi: 10.1038/nrmicro.2017.120. Epub 2017 Oct 24.
7
CRISPR-Cas Technologies and Applications in Food Bacteria.
Annu Rev Food Sci Technol. 2017 Feb 28;8:413-437. doi: 10.1146/annurev-food-072816-024723.
8
Phage-Encoded Anti-CRISPR Defenses.
Annu Rev Genet. 2018 Nov 23;52:445-464. doi: 10.1146/annurev-genet-120417-031321. Epub 2018 Sep 12.
9
The Discovery, Mechanisms, and Evolutionary Impact of Anti-CRISPRs.
Annu Rev Virol. 2017 Sep 29;4(1):37-59. doi: 10.1146/annurev-virology-101416-041616. Epub 2017 Jul 27.
10
Controlling and enhancing CRISPR systems.
Nat Chem Biol. 2021 Jan;17(1):10-19. doi: 10.1038/s41589-020-00700-7. Epub 2020 Dec 16.

引用本文的文献

1
Unraveling the role of mobile genetic elements in antibiotic resistance transmission and defense strategies in bacteria.
Front Syst Biol. 2025 Aug 8;5:1557413. doi: 10.3389/fsysb.2025.1557413. eCollection 2025.
3
Structures, mechanisms and applications of RNA-centric CRISPR-Cas13.
Nat Chem Biol. 2024 Jun;20(6):673-688. doi: 10.1038/s41589-024-01593-6. Epub 2024 May 3.
4
Inhibitors of bacterial immune systems: discovery, mechanisms and applications.
Nat Rev Genet. 2024 Apr;25(4):237-254. doi: 10.1038/s41576-023-00676-9. Epub 2024 Jan 30.
5
Cas9 degradation in human cells using phage anti-CRISPR proteins.
PLoS Biol. 2023 Dec 8;21(12):e3002431. doi: 10.1371/journal.pbio.3002431. eCollection 2023 Dec.
7
A comprehensive appraisal of mechanism of anti-CRISPR proteins: an advanced genome editor to amend the CRISPR gene editing.
Front Plant Sci. 2023 Jun 23;14:1164461. doi: 10.3389/fpls.2023.1164461. eCollection 2023.
8
Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins.
Nat Rev Mol Cell Biol. 2021 Aug;22(8):563-579. doi: 10.1038/s41580-021-00371-9. Epub 2021 Jun 4.

本文引用的文献

1
Disabling Cas9 by an anti-CRISPR DNA mimic.
Sci Adv. 2017 Jul 12;3(7):e1701620. doi: 10.1126/sciadv.1701620. eCollection 2017 Jul.
2
Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
Mol Cell. 2017 Jul 6;67(1):117-127.e5. doi: 10.1016/j.molcel.2017.05.024. Epub 2017 Jun 9.
3
Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein.
Nature. 2017 Jun 15;546(7658):436-439. doi: 10.1038/nature22377. Epub 2017 Apr 27.
5
RNA-based recognition and targeting: sowing the seeds of specificity.
Nat Rev Mol Cell Biol. 2017 Apr;18(4):215-228. doi: 10.1038/nrm.2016.174. Epub 2017 Feb 15.
6
Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.
7
Inhibition of CRISPR-Cas9 with Bacteriophage Proteins.
Cell. 2017 Jan 12;168(1-2):150-158.e10. doi: 10.1016/j.cell.2016.12.009. Epub 2016 Dec 29.
8
Naturally Occurring Off-Switches for CRISPR-Cas9.
Cell. 2016 Dec 15;167(7):1829-1838.e9. doi: 10.1016/j.cell.2016.11.017. Epub 2016 Dec 8.
9
CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes.
Cell. 2017 Jan 12;168(1-2):20-36. doi: 10.1016/j.cell.2016.10.044. Epub 2016 Nov 17.
10
The solution structure of an anti-CRISPR protein.
Nat Commun. 2016 Oct 11;7:13134. doi: 10.1038/ncomms13134.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验