Suppr超能文献

单步基因组和系谱基因型×环境互作模型预测国际环境中的小麦品系。

Single-Step Genomic and Pedigree Genotype × Environment Interaction Models for Predicting Wheat Lines in International Environments.

出版信息

Plant Genome. 2017 Jul;10(2). doi: 10.3835/plantgenome2016.09.0089.

Abstract

Genomic prediction models have been commonly used in plant breeding but only in reduced datasets comprising a few hundred genotyped individuals. However, pedigree information for an entire breeding population is frequently available, as are historical data on the performance of a large number of selection candidates. The single-step method extends the genomic relationship information from genotyped individuals to pedigree information from a larger number of phenotyped individuals in order to combine relationship information on all members of the breeding population. Furthermore, genomic prediction models that incorporate genotype × environment interactions (G × E) have produced substantial increases in prediction accuracy compared with single-environment genomic prediction models. Our main objective was to show how to use single-step genomic and pedigree models to assess the prediction accuracy of 58,798 CIMMYT wheat ( L.) lines evaluated in several simulated environments in Ciudad Obregon, Mexico, and to predict the grain yield performance of some of them in several sites in South Asia (India, Pakistan, and Bangladesh) using a reaction norm model that incorporated G × E. Another objective was to describe the statistical and computational challenges encountered when developing the pedigree and single-step models in such large datasets. Results indicate that the genomic prediction accuracy achieved by models using pedigree only, markers only, or both pedigree and markers to predict various environments in India, Pakistan, and Bangladesh is higher (0.25-0.38) than prediction accuracy of models that use only phenotypic prediction (0.20) or do not include the G × E term.

摘要

基因组预测模型已广泛应用于植物育种,但仅在包含数百个个体的简化数据集上使用。然而,通常可以获得整个育种群体的系谱信息,以及大量选择候选者表现的历史数据。单步法将基因型个体的基因组关系信息扩展到表型个体的系谱信息中,以组合育种群体所有成员的关系信息。此外,与单环境基因组预测模型相比,包含基因型与环境互作(G × E)的基因组预测模型已显著提高了预测准确性。我们的主要目标是展示如何使用单步基因组和系谱模型来评估在墨西哥奥布雷贡市的几个模拟环境中评估的 58798 个 CIMMYT 小麦( L.)系的预测准确性,并使用包含 G × E 的反应规范模型预测其中一些系在南亚(印度、巴基斯坦和孟加拉国)的几个地点的籽粒产量表现。另一个目标是描述在如此庞大的数据集开发系谱和单步模型时遇到的统计和计算挑战。结果表明,仅使用系谱、标记或同时使用系谱和标记来预测印度、巴基斯坦和孟加拉国的各种环境的模型所达到的基因组预测准确性(0.25-0.38)高于仅使用表型预测(0.20)或不包括 G × E 项的模型的预测准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验