Suppr超能文献

CRISPR 作物编辑的技术和监管展望。

A technological and regulatory outlook on CRISPR crop editing.

机构信息

Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

J Cell Biochem. 2018 Feb;119(2):1291-1298. doi: 10.1002/jcb.26303. Epub 2017 Aug 28.

Abstract

Generating plants with increased yields while maintaining low production and maintenance costs is highly important since plants are the major food source for humans and animals, as well as important producers of chemicals, pharmaceuticals, and fuels. Gene editing approaches, particularly the CRISPR-Cas system, are the preferred methods for improving crops, enabling quick, robust, and accurate gene manipulation. Nevertheless, new breeds of genetically modified crops have initiated substantial debates concerning their biosafety, commercial use, and regulation. Here, we discuss the challenges facing genetic engineering of crops by CRISPR-cas, and highlight the pros and cons of using this tool.

摘要

培育产量高、生产成本和维护成本低的植物非常重要,因为植物是人类和动物的主要食物来源,也是化学品、药品和燃料的重要生产者。基因编辑方法,特别是 CRISPR-Cas 系统,是改良作物的首选方法,能够快速、稳健、准确地进行基因操作。然而,新型转基因作物引发了关于其生物安全性、商业用途和监管的大量争论。在这里,我们讨论了 CRISPR-cas 对作物遗传工程面临的挑战,并强调了使用该工具的优缺点。

相似文献

1
A technological and regulatory outlook on CRISPR crop editing.
J Cell Biochem. 2018 Feb;119(2):1291-1298. doi: 10.1002/jcb.26303. Epub 2017 Aug 28.
2
CRISPR/Cas systems: opportunities and challenges for crop breeding.
Plant Cell Rep. 2021 Jun;40(6):979-998. doi: 10.1007/s00299-021-02708-2. Epub 2021 May 11.
3
4
CRISPR/Cas: a powerful tool for designing and improving oil crops.
Trends Biotechnol. 2025 Apr;43(4):773-789. doi: 10.1016/j.tibtech.2024.09.007. Epub 2024 Oct 3.
5
Adoption of CRISPR-Cas for crop production: present status and future prospects.
PeerJ. 2024 Jun 7;12:e17402. doi: 10.7717/peerj.17402. eCollection 2024.
6
CRISPR/Cas: A powerful tool for gene function study and crop improvement.
J Adv Res. 2020 Oct 21;29:207-221. doi: 10.1016/j.jare.2020.10.003. eCollection 2021 Mar.
7
Genome editing research initiatives and regulatory landscape of genome edited crops in India.
Transgenic Res. 2025 Mar 13;34(1):13. doi: 10.1007/s11248-025-00432-1.
8
From bacterial battles to CRISPR crops; progress towards agricultural applications of genome editing.
Emerg Top Life Sci. 2019 Nov 27;3(6):687-693. doi: 10.1042/ETLS20190065.
9
Application of genome editing techniques to regulate gene expression in crops.
BMC Plant Biol. 2024 Feb 9;24(1):100. doi: 10.1186/s12870-024-04786-2.
10
Revolutionizing cotton cultivation: A comprehensive review of genome editing technologies and their impact on breeding and production.
Biochem Biophys Res Commun. 2025 Jan;742:151084. doi: 10.1016/j.bbrc.2024.151084. Epub 2024 Nov 27.

引用本文的文献

1
Attaining the Promise of Geminivirus-Based Vectors in Plant Genome Editing.
Viruses. 2025 Apr 27;17(5):631. doi: 10.3390/v17050631.
5
Advancements in genetic studies of mushrooms: a comprehensive review.
World J Microbiol Biotechnol. 2024 Jul 22;40(9):275. doi: 10.1007/s11274-024-04079-8.
6
Adoption of CRISPR-Cas for crop production: present status and future prospects.
PeerJ. 2024 Jun 7;12:e17402. doi: 10.7717/peerj.17402. eCollection 2024.
7
Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants.
Front Plant Sci. 2024 Feb 21;15:1279738. doi: 10.3389/fpls.2024.1279738. eCollection 2024.
8
Genomics of predictive radiation mutagenesis in oilseed rape: modifying seed oil composition.
Plant Biotechnol J. 2024 Mar;22(3):738-750. doi: 10.1111/pbi.14220. Epub 2023 Nov 3.
10
Genome editing technologies, mechanisms and improved production of therapeutic phytochemicals: Opportunities and prospects.
Biotechnol Bioeng. 2023 Jan;120(1):82-94. doi: 10.1002/bit.28260. Epub 2022 Oct 20.

本文引用的文献

1
Diversity, classification and evolution of CRISPR-Cas systems.
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
2
Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops.
Bioengineered. 2017 May 4;8(3):274-279. doi: 10.1080/21655979.2017.1297347.
4
Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion.
Sci Rep. 2017 Mar 28;7(1):482. doi: 10.1038/s41598-017-00578-x.
5
Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.
6
New CRISPR-Cas systems from uncultivated microbes.
Nature. 2017 Feb 9;542(7640):237-241. doi: 10.1038/nature21059. Epub 2016 Dec 22.
7
Engineering Plant Immunity: Using CRISPR/Cas9 to Generate Virus Resistance.
Front Plant Sci. 2016 Nov 8;7:1673. doi: 10.3389/fpls.2016.01673. eCollection 2016.
8
Bypassing GMO regulations with CRISPR gene editing.
Nat Biotechnol. 2016 Oct 11;34(10):1014-1015. doi: 10.1038/nbt.3680.
9
Applications of CRISPR technologies in research and beyond.
Nat Biotechnol. 2016;34(9):933-941. doi: 10.1038/nbt.3659. Epub 2016 Sep 8.
10
Directing cellular information flow via CRISPR signal conductors.
Nat Methods. 2016 Nov;13(11):938-944. doi: 10.1038/nmeth.3994. Epub 2016 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验