Suppr超能文献

结合 fMRI 数据的任务相关激活和连通性分析揭示了大脑网络的复杂调制。

Combining task-related activation and connectivity analysis of fMRI data reveals complex modulation of brain networks.

机构信息

Department of Clinical Psychology, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany.

Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany.

出版信息

Hum Brain Mapp. 2017 Nov;38(11):5726-5739. doi: 10.1002/hbm.23762. Epub 2017 Aug 7.

Abstract

Task-related effects in functional magnetic resonance imaging (fMRI) data are usually analyzed with local activation approaches or integrative connectivity approaches, for example, by psychophysiological interaction (PPI) analysis. While both approaches are often applied to the same data set, a systematic combination of the results with a whole-brain (WB) perspective is rarely conducted and the relationship between task-dependent activation and connectivity effects is relatively unexplored. Here, we combined brain activation and graph theoretical analysis of WB-PPI results in an exemplary episodic memory data set of N = 136 healthy human participants and found regions with congruent as well as incongruent activation and connectivity changes between task and control conditions. A comparison with large-scale resting state networks showed that in congruent as well as incongruent regions task-positively modulated connections were mainly between-network connections, especially with the default mode network, while task-negatively modulated connections were mainly found within resting state networks. Over all regions, the strength of absolute activation effects was associated with the tendency to exhibit task-positive connectivity changes, mainly driven by a strong relationship in negatively activated regions. These results demonstrate that task demands lead to a complex modulation of brain networks and provide evidence that task-evoked activation and connectivity effects reflect separable and complementary information on the macroscale brain level assessed by fMRI. Hum Brain Mapp 38:5726-5739, 2017. © 2017 Wiley Periodicals, Inc.

摘要

任务相关的 fMRI 数据的分析通常使用局部激活方法或整合连通性方法,例如,通过心理生理交互 (PPI) 分析。虽然这两种方法通常应用于相同的数据集,但很少从全脑 (WB) 的角度对结果进行系统地组合,而且任务相关的激活和连通性效应之间的关系也没有得到充分探索。在这里,我们将脑激活与全脑 PPI 结果的图论分析相结合,对 136 名健康人类参与者的情景记忆数据集进行了分析,发现了在任务和对照条件下激活和连通性变化一致和不一致的区域。与大规模静息态网络的比较表明,在一致和不一致的区域中,任务正调制的连接主要是网络间的连接,尤其是与默认模式网络的连接,而任务负调制的连接主要在静息态网络内发现。在所有区域中,绝对激活效应的强度与表现出任务正连通性变化的趋势有关,主要是由负激活区域的强关系驱动。这些结果表明,任务需求导致大脑网络的复杂调制,并提供证据表明,fMRI 评估的宏观脑水平上的任务诱发激活和连通性效应反映了可分离和互补的信息。人脑映射 38:5726-5739, 2017. © 2017 威利父子公司。

相似文献

引用本文的文献

10

本文引用的文献

3
Functional Connectivity's Degenerate View of Brain Computation.大脑计算的功能连接性简并观点。
PLoS Comput Biol. 2016 Oct 13;12(10):e1005031. doi: 10.1371/journal.pcbi.1005031. eCollection 2016 Oct.
8
Dynamic reorganization of human resting-state networks during visuospatial attention.视觉空间注意期间人类静息态网络的动态重组
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8112-7. doi: 10.1073/pnas.1415439112. Epub 2015 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验