文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Composite iron oxide-Prussian blue nanoparticles for magnetically guided T-weighted magnetic resonance imaging and photothermal therapy of tumors.

作者信息

Kale Shraddha S, Burga Rachel A, Sweeney Elizabeth E, Zun Zungho, Sze Raymond W, Tuesca Anthony, Subramony J Anand, Fernandes Rohan

机构信息

The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA.

Department of Biomedical Engineering, George Washington University, Washington, DC, USA.

出版信息

Int J Nanomedicine. 2017 Sep 5;12:6413-6424. doi: 10.2147/IJN.S144515. eCollection 2017.


DOI:10.2147/IJN.S144515
PMID:28919744
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5592912/
Abstract

Theranostic nanoparticles offer the potential for mixing and matching disparate diagnostic and therapeutic functionalities within a single nanoparticle for the personalized treatment of diseases. In this article, we present composite iron oxide-gadolinium-containing Prussian blue nanoparticles (FeO@GdPB) as a novel theranostic agent for T-weighted magnetic resonance imaging (MRI) and photothermal therapy (PTT) of tumors. These particles combine the well-described properties and safety profiles of the constituent FeO nanoparticles and gadolinium-containing Prussian blue nanoparticles. The FeO@GdPB nanoparticles function both as effective MRI contrast agents and PTT agents as determined by characterizing studies performed in vitro and retain their properties in the presence of cells. Importantly, the FeO@GdPB nanoparticles function as effective MRI contrast agents in vivo by increasing signal:noise ratios in T-weighted scans of tumors and as effective PTT agents in vivo by decreasing tumor growth rates and increasing survival in an animal model of neuroblastoma. These findings demonstrate the potential of the FeO@GdPB nanoparticles to function as effective theranostic agents.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/c0f35142b424/ijn-12-6413Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/f235d6f7488c/ijn-12-6413Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/d6b9dad513f9/ijn-12-6413Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/1b59a60e0d3d/ijn-12-6413Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/f4b98fa6960c/ijn-12-6413Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/4567d482f91c/ijn-12-6413Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/be4aa8c340a4/ijn-12-6413Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/c0f35142b424/ijn-12-6413Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/f235d6f7488c/ijn-12-6413Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/d6b9dad513f9/ijn-12-6413Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/1b59a60e0d3d/ijn-12-6413Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/f4b98fa6960c/ijn-12-6413Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/4567d482f91c/ijn-12-6413Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/be4aa8c340a4/ijn-12-6413Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e74/5592912/c0f35142b424/ijn-12-6413Fig7.jpg

相似文献

[1]
Composite iron oxide-Prussian blue nanoparticles for magnetically guided T-weighted magnetic resonance imaging and photothermal therapy of tumors.

Int J Nanomedicine. 2017-9-5

[2]
Tailored ultra-small Prussian blue-based nanoparticles for MRI imaging and combined photothermal/photoacoustic theranostics.

Chem Commun (Camb). 2019-12-5

[3]
Hybrid Au-star@Prussian blue for high-performance towards bimodal imaging and photothermal treatment.

J Colloid Interface Sci. 2023-3-15

[4]
Prussian blue/serum albumin/indocyanine green as a multifunctional nanotheranostic agent for bimodal imaging guided laser mediated combinatorial phototherapy.

J Control Release. 2016-6-25

[5]
Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance.

J Cancer Res Clin Oncol. 2019-3-7

[6]
MnCO-mineralized polydopamine nanoparticles as an activatable theranostic agent for dual-modality imaging-guided photothermal therapy of cancers.

Theranostics. 2022

[7]
Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance.

Bioconjug Chem. 2014-9-17

[8]
Multifunctional theranostic agents based on prussian blue nanoparticles for tumor targeted and MRI-guided photodynamic/photothermal combined treatment.

Nanotechnology. 2019-11-29

[9]
Interfacial engineered gadolinium oxide nanoparticles for magnetic resonance imaging guided microenvironment-mediated synergetic chemodynamic/photothermal therapy.

Biomaterials. 2019-7-27

[10]
Zn Doped Ultrasmall Prussian Blue Nanotheranostic Agent for Breast Cancer Photothermal Therapy under MR Imaging Guidance.

Adv Healthc Mater. 2020-1

引用本文的文献

[1]
A review of combined imaging and therapeutic applications based on MNMs.

Front Chem. 2025-5-26

[2]
Iron Oxide Nanoparticles: Parameters for Optimized Photoconversion Efficiency in Synergistic Cancer Treatment.

J Funct Biomater. 2024-7-25

[3]
Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges.

Pharmaceuticals (Basel). 2023-2-7

[4]
Nanotechnology-Based Diagnostic and Therapeutic Strategies for Neuroblastoma.

Front Pharmacol. 2022-6-2

[5]
An Engineered Prussian Blue Nanoparticles-based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH-MYCN Neuroblastoma Model.

Adv Nanobiomed Res. 2021-8

[6]
Stimuli-Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy.

Adv Healthc Mater. 2021-3

[7]
CpG-coated prussian blue nanoparticles-based photothermal therapy combined with anti-CTLA-4 immune checkpoint blockade triggers a robust abscopal effect against neuroblastoma.

Transl Oncol. 2020-10

[8]
Gadolinium-doped Au@prussian blue nanoparticles as MR/SERS bimodal agents for dendritic cell activating and tracking.

Theranostics. 2020-5-15

[9]
Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain.

J Control Release. 2020-4-10

[10]
Nanotechnology based therapeutic application in cancer diagnosis and therapy.

3 Biotech. 2019-11

本文引用的文献

[1]
Functional magnetic Prussian blue nanoparticles for enhanced gene transfection and photothermal ablation of tumor cells.

J Mater Chem B. 2016-7-21

[2]
Nanoparticles in the clinic.

Bioeng Transl Med. 2016-6-3

[3]
Companion diagnostics-a tool to improve pharmacotherapy.

Ann Transl Med. 2016-12

[4]
Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma.

Nanomedicine. 2017-2

[5]
Cancer statistics, 2016.

CA Cancer J Clin. 2016-1-7

[6]
Combination of Id2 Knockdown Whole Tumor Cells and Checkpoint Blockade: A Potent Vaccine Strategy in a Mouse Neuroblastoma Model.

PLoS One. 2015-6-16

[7]
Biofunctionalized prussian blue nanoparticles for multimodal molecular imaging applications.

J Vis Exp. 2015-4-28

[8]
Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance.

Bioconjug Chem. 2014-9-17

[9]
Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors.

Int J Nanomedicine. 2014-5-23

[10]
PEGylated PAMAM dendrimer-doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy.

Biomaterials. 2014-5-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索