Suppr超能文献

临界性的特征源自简单种群模型中的随机子抽样。

Signatures of criticality arise from random subsampling in simple population models.

作者信息

Nonnenmacher Marcel, Behrens Christian, Berens Philipp, Bethge Matthias, Macke Jakob H

机构信息

Research Center caesar, an associate of the Max Planck Society, Bonn, Germany.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

出版信息

PLoS Comput Biol. 2017 Oct 3;13(10):e1005718. doi: 10.1371/journal.pcbi.1005718. eCollection 2017 Oct.

Abstract

The rise of large-scale recordings of neuronal activity has fueled the hope to gain new insights into the collective activity of neural ensembles. How can one link the statistics of neural population activity to underlying principles and theories? One attempt to interpret such data builds upon analogies to the behaviour of collective systems in statistical physics. Divergence of the specific heat-a measure of population statistics derived from thermodynamics-has been used to suggest that neural populations are optimized to operate at a "critical point". However, these findings have been challenged by theoretical studies which have shown that common inputs can lead to diverging specific heat. Here, we connect "signatures of criticality", and in particular the divergence of specific heat, back to statistics of neural population activity commonly studied in neural coding: firing rates and pairwise correlations. We show that the specific heat diverges whenever the average correlation strength does not depend on population size. This is necessarily true when data with correlations is randomly subsampled during the analysis process, irrespective of the detailed structure or origin of correlations. We also show how the characteristic shape of specific heat capacity curves depends on firing rates and correlations, using both analytically tractable models and numerical simulations of a canonical feed-forward population model. To analyze these simulations, we develop efficient methods for characterizing large-scale neural population activity with maximum entropy models. We find that, consistent with experimental findings, increases in firing rates and correlation directly lead to more pronounced signatures. Thus, previous reports of thermodynamical criticality in neural populations based on the analysis of specific heat can be explained by average firing rates and correlations, and are not indicative of an optimized coding strategy. We conclude that a reliable interpretation of statistical tests for theories of neural coding is possible only in reference to relevant ground-truth models.

摘要

神经元活动大规模记录的兴起激发了人们希望获得对神经群体集体活动新见解的愿望。如何将神经群体活动的统计数据与潜在原理和理论联系起来?一种解释此类数据的尝试基于与统计物理学中集体系统行为的类比。比热的发散——一种源自热力学的群体统计量度——已被用来表明神经群体被优化以在“临界点”运行。然而,这些发现受到了理论研究的挑战,这些研究表明共同输入会导致比热发散。在这里,我们将“临界性特征”,特别是比热的发散,与神经编码中通常研究的神经群体活动统计数据联系起来:放电率和成对相关性。我们表明,只要平均相关强度不依赖于群体大小,比热就会发散。当在分析过程中对具有相关性的数据进行随机子采样时,无论相关性的详细结构或来源如何,情况必然如此。我们还展示了比热容量曲线的特征形状如何依赖于放电率和相关性,使用了易于分析的模型和典型前馈群体模型的数值模拟。为了分析这些模拟,我们开发了用最大熵模型表征大规模神经群体活动的有效方法。我们发现,与实验结果一致,放电率和相关性的增加直接导致更明显的特征。因此,以前基于比热分析得出的神经群体热力学临界性的报告可以用平均放电率和相关性来解释,并不表明存在优化的编码策略。我们得出结论,只有参考相关的真实模型,才有可能对神经编码理论的统计测试进行可靠的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388f/5640238/89886464cc71/pcbi.1005718.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验