Suppr超能文献

应激诱导的假尿嘧啶核苷修饰改变了酵母 U2 snRNA 茎 II 的结构平衡。

Stress-induced Pseudouridylation Alters the Structural Equilibrium of Yeast U2 snRNA Stem II.

机构信息

Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA.

Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA.

出版信息

J Mol Biol. 2018 Feb 16;430(4):524-536. doi: 10.1016/j.jmb.2017.10.021. Epub 2017 Oct 24.

Abstract

In yeast, the U2 small nuclear ribonucleic acid (snRNA) component of the spliceosome is targeted for additional post-transcriptional modifications in response to cellular stress. Uridines 56 and 93 are both modified to pseudouridines (Ψ) during nutrient deprivation, while U56 is also pseudouridylated during heat shock. Both positions are located within stem II, which must toggle between two mutually exclusive structures during splicing. Stem IIa forms during spliceosome assembly, and stem IIc forms during the catalytic steps. We have studied how uridine 56 and 93 pseudouridylation impacts conformational switching of stem II. Using single-molecule Förster resonance energy transfer, we show that Ψ56 dampens conformational dynamics of stem II and stabilizes stem IIc. In contrast, Ψ93 increases dynamics of non-stem IIc conformations. Pseudouridylation impacts conformational switching of stem II by Mg or the U2 protein Cus2; however, when Mg and Cus2 are used in combination, the impacts of pseudouridylation can be suppressed. These results show that stress-induced post-transcriptional modification of U56 and U93 alters snRNA conformational dynamics by distinct mechanisms and that protein and metal cofactors of the spliceosome alter how snRNAs respond to these modifications.

摘要

在酵母中,剪接体的 U2 小核 RNA(snRNA)成分会针对细胞应激做出额外的转录后修饰。在营养缺乏时,U56 和 U93 都被修饰成假尿嘧啶(Ψ),而 U56 在热休克时也被假尿嘧啶化。这两个位置都位于茎 II 内,在剪接过程中必须在两个相互排斥的结构之间切换。茎 IIa 在剪接体组装过程中形成,茎 IIc 在催化步骤中形成。我们研究了尿嘧啶 56 和 93 假尿嘧啶化如何影响茎 II 的构象转换。使用单分子Förster 共振能量转移,我们表明 Ψ56 抑制了茎 II 的构象动力学并稳定了茎 IIc。相比之下,Ψ93 增加了非茎 IIc 构象的动力学。假尿嘧啶化通过 Mg 或 U2 蛋白 Cus2 影响茎 II 的构象转换;然而,当 Mg 和 Cus2 联合使用时,假尿嘧啶化的影响可以被抑制。这些结果表明,应激诱导的 U56 和 U93 的转录后修饰通过不同的机制改变了 snRNA 的构象动力学,剪接体的蛋白质和金属辅助因子改变了 snRNA 对这些修饰的反应方式。

相似文献

2
Conformational dynamics of stem II of the U2 snRNA.U2小核核糖核酸茎II的构象动力学
RNA. 2016 Feb;22(2):225-36. doi: 10.1261/rna.052233.115. Epub 2015 Dec 2.
5
Functions and mechanisms of spliceosomal small nuclear RNA pseudouridylation.剪接体小核 RNA 假尿嘧啶化的功能和机制。
Wiley Interdiscip Rev RNA. 2011 Jul-Aug;2(4):571-81. doi: 10.1002/wrna.77. Epub 2011 Feb 18.
6
Pseudouridines in spliceosomal snRNAs.剪接体 snRNA 中的假尿嘧啶核苷。
Protein Cell. 2011 Sep;2(9):712-25. doi: 10.1007/s13238-011-1087-1. Epub 2011 Oct 6.

引用本文的文献

6
Spliceosomal snRNA Epitranscriptomics.剪接体小核核糖核酸表观转录组学
Front Genet. 2021 Mar 2;12:652129. doi: 10.3389/fgene.2021.652129. eCollection 2021.
9
Structural and functional modularity of the U2 snRNP in pre-mRNA splicing.U2 snRNP 在 pre-mRNA 剪接中的结构和功能模块化。
Crit Rev Biochem Mol Biol. 2019 Oct;54(5):443-465. doi: 10.1080/10409238.2019.1691497. Epub 2019 Nov 20.
10
Approaches for measuring the dynamics of RNA-protein interactions.RNA 与蛋白质相互作用动力学的测量方法。
Wiley Interdiscip Rev RNA. 2020 Jan;11(1):e1565. doi: 10.1002/wrna.1565. Epub 2019 Aug 20.

本文引用的文献

2
An Atomic Structure of the Human Spliceosome.人类剪接体的原子结构。
Cell. 2017 May 18;169(5):918-929.e14. doi: 10.1016/j.cell.2017.04.033. Epub 2017 May 11.
5
Structure of a spliceosome remodelled for exon ligation.为外显子连接而重塑的剪接体结构。
Nature. 2017 Feb 16;542(7641):377-380. doi: 10.1038/nature21078. Epub 2017 Jan 11.
7
Molecular architecture of the Saccharomyces cerevisiae activated spliceosome.酿酒酵母激活剪接体的分子结构。
Science. 2016 Sep 23;353(6306):1399-1405. doi: 10.1126/science.aag1906. Epub 2016 Aug 25.
8
Cryo-EM structure of the spliceosome immediately after branching.分支后剪接体的冷冻电镜结构
Nature. 2016 Sep 8;537(7619):197-201. doi: 10.1038/nature19316. Epub 2016 Jul 26.
10
Structure of a yeast activated spliceosome at 3.5 Å resolution.酵母激活剪接体的 3.5Å 分辨率结构。
Science. 2016 Aug 26;353(6302):904-11. doi: 10.1126/science.aag0291. Epub 2016 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验