Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Institut National De La Santé Et De La Recherche Médicale U1028, Centre National De La Recherche Scientifique UMR S5292, Centre De Recherche En Neurosciences De Lyon, Bron, France.
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany.
Neuroimage. 2019 Aug 15;197:689-698. doi: 10.1016/j.neuroimage.2017.11.002. Epub 2017 Nov 3.
This review investigates how laminar fMRI can complement insights into brain function derived from the study of rhythmic neuronal synchronization. Neuronal synchronization in various frequency bands plays an important role in neuronal communication between brain areas, and it does so on the backbone of layer-specific interareal anatomical projections. Feedforward projections originate predominantly in supragranular cortical layers and terminate in layer 4, and this pattern is reflected in inter-laminar and interareal directed gamma-band influences. Thus, gamma-band synchronization likely subserves feedforward signaling. By contrast, anatomical feedback projections originate predominantly in infragranular layers and terminate outside layer 4, and this pattern is reflected in inter-laminar and interareal directed alpha- and/or beta-band influences. Thus, alpha-beta band synchronization likely subserves feedback signaling. Furthermore, these rhythms explain part of the BOLD signal, with independent contributions of alpha-beta and gamma. These findings suggest that laminar fMRI can provide us with a potentially useful method to test some of the predictions derived from the study of neuronal synchronization. We review central findings regarding the role of layer-specific neuronal synchronization for brain function, and regarding the link between neuronal synchronization and the BOLD signal. We discuss the role that laminar fMRI could play by comparing it to invasive and non-invasive electrophysiological recordings. Compared to direct electrophysiological recordings, this method provides a metric of neuronal activity that is slow and indirect, but that is uniquely non-invasive and layer-specific with potentially whole brain coverage.
这篇综述探讨了层分辨 fMRI 如何补充节律性神经元同步研究中对大脑功能的认识。不同频段的神经元同步在大脑区域之间的神经元通讯中起着重要作用,其基础是具有层特异性的区域间解剖投射。前馈投射主要起源于颗粒上层,并终止于第 4 层,这种模式反映在层间和区域间的伽马带影响上。因此,伽马带同步可能支持前馈信号。相比之下,解剖学上的反馈投射主要起源于颗粒下层,并终止于第 4 层以外,这种模式反映在层间和区域间的α和/或β带影响上。因此,α-β 带同步可能支持反馈信号。此外,这些节律解释了部分 BOLD 信号,其中包括α-β 和γ的独立贡献。这些发现表明,层分辨 fMRI 可以为我们提供一种有用的方法来测试一些源自神经元同步研究的预测。我们综述了关于层特异性神经元同步对大脑功能的作用的核心发现,以及神经元同步与 BOLD 信号之间的联系。我们通过将其与侵入性和非侵入性电生理记录进行比较,讨论了层分辨 fMRI 可能发挥的作用。与直接电生理记录相比,这种方法提供了一种缓慢而间接的神经元活动度量,但它具有独特的非侵入性和层特异性,具有潜在的全脑覆盖。