He Miao, Wang Wei, Ding Hui, Zhong Xingwu
Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China.
Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China *
Optom Vis Sci. 2017 Dec;94(12):1074-1080. doi: 10.1097/OPX.0000000000001152.
The cornea is a viscoelastic tissue with viscous and elastic properties. The information of corneal biomechanical changes in high myopia has implications for understanding the pathogenesis of high myopia and primary open angle glaucoma. However, the knowledge of corneal biomechanics in high myopia is limited.
To compare the corneal biomechanical properties in high-myopia subjects and emmetropia subjects.
Dynamic Scheimpflug imaging technology was used to measure intraocular pressure, central corneal thickness, and corneal biomechanical parameters, including time at the first applanation, velocity at the first applanation, length at the first applanation, deformation amplitude at the first applanation, time at the second applanation, A2V (velocity at the second applanation), length at the second applanation (A2L), deformation amplitude at the second applanation, time at the highest concavity, radius curvature at the highest concavity (HCR), maximal deformation amplitude (MDA), and peak distance.
This study included 40 subjects with high myopia and 61 emmetropia subjects. The high-myopia demonstrated greater MDA compared with the emmetropia (1.07 ± 0.01 vs. 1.02 ± 0.01 mm; P < .001) after adjusting for age and intraocular pressure. Pooling analysis found that the high myopia exhibited a smaller HCR, greater MDA, faster A2V and shorter A2L, with a pooled mean difference of -0.21 mm (95% confidential interval [95% CI], -0.30 to -0.13; P < .001) for HCR, 0.05 mm (95% CI, 0.04 to 0.06; P < .001) for MDA, -0.03 m/s (95% CI, -0.06 to -0.002; P = .034) for A2V, and -0.05 mm (95% CI, -0.08 to -0.02; P = .001) for A2L.
Eyes with high myopia showed a significantly smaller HCR, greater MDA, faster A2V, and shorter A2L than did those with emmetropia, which indicated that the cornea in an eye with high myopia becomes weaker and more deformable.
角膜是一种具有粘性和弹性特性的粘弹性组织。高度近视眼角膜生物力学变化的信息对于理解高度近视和原发性开角型青光眼的发病机制具有重要意义。然而,目前关于高度近视眼角膜生物力学的知识有限。
比较高度近视患者和正视眼患者的角膜生物力学特性。
采用动态Scheimpflug成像技术测量眼压、中央角膜厚度和角膜生物力学参数,包括首次压平时间、首次压平速度、首次压平长度、首次压平变形幅度、第二次压平时间、第二次压平速度(A2V)、第二次压平长度(A2L)、第二次压平变形幅度、最高凹陷时间、最高凹陷处曲率半径(HCR)、最大变形幅度(MDA)和峰值距离。
本研究纳入40例高度近视患者和61例正视眼患者。在调整年龄和眼压后,高度近视患者的MDA显著高于正视眼患者(1.07±0.01 vs. 1.02±0.01 mm;P <.001)。汇总分析发现,高度近视患者的HCR较小,MDA较大,A2V较快,A2L较短,HCR的汇总平均差异为-0.21 mm(95%置信区间[95%CI],-0.30至-0.13;P <.001),MDA为0.05 mm(95%CI,0.04至0.06;P <.001),A2V为-0.03 m/s(95%CI,-0.06至-0.002;P =.034),A2L为-0.05 mm(95%CI,-0.08至-0.02;P =.001)。
与正视眼相比,高度近视眼角膜的HCR显著更小,MDA更大,A2V更快,A2L更短,这表明高度近视眼角膜变得更脆弱、更易变形。