Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary.
Institute of Applied Physics - Biophysics, TU Wien, 1040, Vienna, Austria.
Sci Rep. 2017 Nov 15;7(1):15643. doi: 10.1038/s41598-017-15821-8.
The current research on cellular heat stress management focuses on the roles of heat shock proteins (HSPs) and the proteostasis network under severe stress conditions. The mild, fever-type stress and the maintenance of membrane homeostasis are less well understood. Herein, we characterized the acute effect of mild, fever-range heat shock on membrane organization, and HSP synthesis and localization in two mammalian cell lines, to delineate the role of membranes in the sensing and adaptation to heat. A multidisciplinary approach combining ultrasensitive fluorescence microscopy and lipidomics revealed the molecular details of novel cellular "eustress", when cells adapt to mild heat by maintaining membrane homeostasis, activating lipid remodeling, and redistributing chaperone proteins. Notably, this leads to acquired thermotolerance in the complete absence of the induction of HSPs. At higher temperatures, additional defense mechanisms are activated, including elevated expression of molecular chaperones, contributing to an extended stress memory and acquired thermotolerance.
目前,细胞热应激管理的研究集中在严重应激条件下热休克蛋白 (HSPs) 和蛋白质平衡网络的作用。对于轻度发热型应激和膜稳态的维持,人们的了解较少。在此,我们描述了轻度发热范围的热休克对两种哺乳动物细胞系的膜组织、HSP 合成和定位的急性影响,以阐明膜在感知和适应热应激中的作用。结合超灵敏荧光显微镜和脂质组学的多学科方法揭示了细胞“良性应激”的分子细节,即细胞通过维持膜稳态、激活脂质重塑和重分布伴侣蛋白来适应轻度热时的情况。值得注意的是,这导致在完全没有 HSP 诱导的情况下获得耐热性。在更高的温度下,会激活额外的防御机制,包括分子伴侣的表达增加,有助于延长应激记忆和获得耐热性。