Suppr超能文献

一种用于几何形态计量学的自动地标检测的配准与深度学习方法。

A Registration and Deep Learning Approach to Automated Landmark Detection for Geometric Morphometrics.

作者信息

Devine Jay, Aponte Jose D, Katz David C, Liu Wei, Lo Vercio Lucas D, Forkert Nils D, Marcucio Ralph, Percival Christopher J, Hallgrímsson Benedikt

机构信息

Department of Cell Biology and Anatomy, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.

Department of Radiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.

出版信息

Evol Biol. 2020 Sep;47(3):246-259. doi: 10.1007/s11692-020-09508-8. Epub 2020 Jul 9.

Abstract

Geometric morphometrics is the statistical analysis of landmark-based shape variation and its covariation with other variables. Over the past two decades, the gold standard of landmark data acquisition has been manual detection by a single observer. This approach has proven accurate and reliable in small-scale investigations. However, big data initiatives are increasingly common in biology and morphometrics. This requires fast, automated, and standardized data collection. We combine techniques from image registration, geometric morphometrics, and deep learning to automate and optimize anatomical landmark detection. We test our method on high-resolution, micro-computed tomography images of adult mouse skulls. To ensure generalizability, we use a morphologically diverse sample and implement fundamentally different deformable registration algorithms. Compared to landmarks derived from conventional image registration workflows, our optimized landmark data show up to a 39.1% reduction in average coordinate error and a 36.7% reduction in total distribution error. In addition, our landmark optimization produces estimates of the sample mean shape and variance-covariance structure that are statistically indistinguishable from expert manual estimates. For biological imaging datasets and morphometric research questions, our approach can eliminate the time and subjectivity of manual landmark detection whilst retaining the biological integrity of these expert annotations.

摘要

几何形态测量学是基于地标点的形状变异及其与其他变量的协变关系的统计分析。在过去二十年中,地标点数据采集的金标准一直是由单一观察者进行手动检测。在小规模研究中,这种方法已被证明是准确可靠的。然而,大数据计划在生物学和形态测量学中越来越普遍。这就需要快速、自动化和标准化的数据收集。我们结合图像配准、几何形态测量学和深度学习技术,实现解剖学地标点检测的自动化和优化。我们在成年小鼠颅骨的高分辨率微型计算机断层扫描图像上测试了我们的方法。为确保通用性,我们使用了形态多样的样本,并实施了根本不同的可变形配准算法。与传统图像配准工作流程得出的地标点相比,我们优化后的地标点数据平均坐标误差降低了39.1%,总分布误差降低了36.7%。此外,我们的地标点优化产生的样本平均形状估计和方差协方差结构与专家手动估计在统计上没有区别。对于生物成像数据集和形态测量学研究问题,我们的方法可以消除手动地标点检测的时间和主观性,同时保留这些专家注释的生物学完整性。

相似文献

7
Lung registration using automatically detected landmarks.使用自动检测地标进行肺部配准。
Methods Inf Med. 2014;53(4):250-6. doi: 10.3414/ME13-01-0125. Epub 2014 Jul 4.

引用本文的文献

本文引用的文献

1
Integration and the Developmental Genetics of Allometry.整体论与生长比率的发育遗传学。
Integr Comp Biol. 2019 Nov 1;59(5):1369-1381. doi: 10.1093/icb/icz105.
4
The developmental-genetics of canalization. canalization 的发育遗传学。
Semin Cell Dev Biol. 2019 Apr;88:67-79. doi: 10.1016/j.semcdb.2018.05.019. Epub 2018 May 24.
7
MINC 2.0: A Flexible Format for Multi-Modal Images.MINC 2.0:一种用于多模态图像的灵活格式。
Front Neuroinform. 2016 Aug 11;10:35. doi: 10.3389/fninf.2016.00035. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验