School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
Nanoscale. 2018 Mar 15;10(11):5089-5096. doi: 10.1039/c7nr08178b.
Wrinkled patterns, which possess an extensive surface area over a limited planar space, can provide surface features ranging across the nano- and microscale that have become an engineering material with the flexibility to be tuneable for a number of technologies. Here, we investigate the surface parameters that influence the attachment response of two model bacteria (P. aeruginosa and S. aureus) to wrinkled gold-coated polystyrene surfaces having topologies at the nano- and microscale. Together with flat gold films as the controls, surface feature heights spanned 2 orders of magnitude (15 nm, 200 nm, and 1 micron). The surface wrinkle topology was shown through confocal laser scanning microscopic, atomic force microscopic and scanning electron microscopic image analyses to consist of air-water interfacial areas unavailable for bacterial attachment, which were also shown to be stable by time-lapsed contact angle measurements. Imposition of the nanoscale wrinkles reduced P. aeruginosa attachment to 57% and S. aureus attachment to 20% of their flat equivalent surfaces whereas wrinkles at the microscale further reduced these attachments to 7.5% and 14.5%, respectively. The density of attachments indicated an inherent species specific selectivity that changed with feature dimension, attributable to the scale of the air-water interfaces in contact with the bacterial cell. Parameters influencing static bacterial attachment were the total projected surface areas minus the air-water interface areas and the scale of these respective air-water interfaces (area distribution) with respect to the cell morphology. The range of these controlling parameters may provide new design principles for the evolving suite of physical anti-biofouling materials not reliant on biocidal agents under development.
皱纹图案具有在有限的平面空间上覆盖广泛表面积的特点,可以提供纳米到微观尺度的表面特征,成为一种具有可调节性的工程材料,可适用于多种技术。在这里,我们研究了影响两种模型细菌(铜绿假单胞菌和金黄色葡萄球菌)在具有纳米和微观拓扑结构的皱纹金涂覆聚苯乙烯表面上附着反应的表面参数。与平面金膜作为对照,表面特征高度跨越了两个数量级(15nm、200nm 和 1 微米)。通过共焦激光扫描显微镜、原子力显微镜和扫描电子显微镜图像分析表明,表面皱纹拓扑结构由细菌附着不可用的气-水界面区域组成,通过时变接触角测量也表明这些区域是稳定的。纳米级皱纹的施加使铜绿假单胞菌的附着减少到其平面等效表面的 57%,金黄色葡萄球菌的附着减少到其平面等效表面的 20%,而微尺度的皱纹进一步将这些附着减少到 7.5%和 14.5%。附着密度表明存在一种固有、特定于物种的选择性,这种选择性随着特征尺寸的变化而变化,这归因于与细菌细胞接触的气-水界面的尺度。影响静态细菌附着的参数是总投影表面积减去气-水界面面积,以及这些气-水界面各自的尺度(面积分布)与细胞形态的关系。这些控制参数的范围可能为不断发展的物理抗生物污染材料提供新的设计原则,这些材料不依赖于正在开发的杀菌剂。