Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States.
Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States.
Environ Int. 2018 May;114:334-342. doi: 10.1016/j.envint.2017.12.010. Epub 2018 Feb 22.
Exposure to persistent organic pollutants (POPs) may predispose to the development of type 2 diabetes (T2D), but prospective human evidence is scarce.
We investigated the association between plasma-POP concentrations in the late 1990s and incident T2D over 11 years of follow-up in the Nurses' Health Study II.
Three organochlorine pesticides and 20 polychlorinated biphenyls (PCBs) were measured in banked plasma from 793 case-control pairs of T2D. In a multiviarate-adjusted model, T2D ORs (95%CIs) comparing extreme POP tertiles (high vs. low) were 1.67 (1.24, 2.23; P < 0.001) for hexachlorobenzene (HCB), 3.62 (2.57, 5.11; P < 0.001) for β-hexachlorocyclohexane (β-HCH), 1.55 (1.13, 2.13; P = 0.05) for p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), and 1.95 (1.42, 2.69; P < 0.001) for total dioxin-like PCBs (DL-PCBs) which included 5 mono-ortho congeners, PCB-105, 118, 156, 157, and 167. Adjustment for previous weight change and body mass index (BMI) at blood draw attenuated these associations, but that for DL-PCBs remained (OR[95% CI] = 1.78[1.14, 2.76]; P = 0.006). Age, breastfeeding history, previous weight change and BMI at blood draw were significant predictors of plasma POP concentrations. In addition, we found significant interactions of POPs and weight change before blood draw on T2D risk. ORs (95%CIs) of T2D comparing extreme (high vs. low) POP groups were 2.00 (1.02, 3.92; P = 0.01) for HCB, 2.69 (1.34, 5.40; P < 0.001) for β-HCH, and 2.41 (1.22, 4.77; P < 0.001) for DL-PCBs in the lowest weight gain group, whereas these values were 1.29 (0.73, 2.28; P = 0.46; P = 0.04) for HCB, 1.41 (0.77, 2.60; P = 0.24; P = 0.003) for β-HCH, and 0.90 (0.50, 1.63; P = 0.61; P = 0.01) for DL-PCBs in the highest weight-gain group.
Our findings suggest that elevated POP exposure may have diabetogenic potential. These data also highlight the impact of lifestyle factors, especially history of weight gain, on circulating POP concentrations and their associations with subsequent T2D risk.
接触持久性有机污染物(POPs)可能使 2 型糖尿病(T2D)发病风险增加,但前瞻性人体证据有限。
我们研究了护士健康研究 II 中,1990 年代末血浆中 POP 浓度与 11 年随访期间 T2D 发病之间的关联。
在 793 对 T2D 病例-对照配对的银行血浆中,检测了三种有机氯农药和 20 种多氯联苯(PCBs)。在多变量调整模型中,与极端 POP 三分位(高 vs. 低)相比,T2D 的 OR(95%CI)分别为 1.67(1.24,2.23;P<0.001),六氯苯(HCB),3.62(2.57,5.11;P<0.001),β-六氯环己烷(β-HCH),1.55(1.13,2.13;P=0.05),对,对-二氯二苯二氯乙烯(p,p'-DDE)和 1.95(1.42,2.69;P<0.001),总二恶英样多氯联苯(DL-PCBs)包括 5 种单-邻位同系物,PCB-105、118、156、157 和 167。调整先前的体重变化和采血时的体重指数(BMI)削弱了这些关联,但对 DL-PCBs 仍然如此(OR[95%CI] = 1.78[1.14,2.76];P = 0.006)。年龄、母乳喂养史、采血前的体重变化和 BMI 是血浆 POP 浓度的重要预测因素。此外,我们发现采血前的 POP 和体重变化之间存在显著的交互作用,对 T2D 风险有影响。与极端(高 vs. 低)POP 组相比,T2D 的 OR(95%CI)分别为 2.00(1.02,3.92;P = 0.01),HCB,2.69(1.34,5.40;P<0.001),β-HCH 和 2.41(1.22,4.77;P<0.001)在体重增加最低的组中,而这些值在 HCB 中为 1.29(0.73,2.28;P = 0.46;P = 0.04),β-HCH 为 1.41(0.77,2.60;P = 0.24;P = 0.003),DL-PCBs 为 0.90(0.50,1.63;P = 0.61;P = 0.01),体重增加最多的组。
我们的研究结果表明,POP 暴露水平升高可能具有致糖尿病的潜力。这些数据还强调了生活方式因素,特别是体重增加史,对循环 POP 浓度及其与随后的 T2D 风险之间的关联的影响。