Suppr超能文献

利用卷积神经网络对皮肤镜图像进行肢端黑素瘤检测。

Acral melanoma detection using a convolutional neural network for dermoscopy images.

机构信息

Department of Media Technology, Graduate School of Media, Sogang University, Seoul, Republic of Korea.

Medical Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, United States of America.

出版信息

PLoS One. 2018 Mar 7;13(3):e0193321. doi: 10.1371/journal.pone.0193321. eCollection 2018.

Abstract

BACKGROUND/PURPOSE: Acral melanoma is the most common type of melanoma in Asians, and usually results in a poor prognosis due to late diagnosis. We applied a convolutional neural network to dermoscopy images of acral melanoma and benign nevi on the hands and feet and evaluated its usefulness for the early diagnosis of these conditions.

METHODS

A total of 724 dermoscopy images comprising acral melanoma (350 images from 81 patients) and benign nevi (374 images from 194 patients), and confirmed by histopathological examination, were analyzed in this study. To perform the 2-fold cross validation, we split them into two mutually exclusive subsets: half of the total image dataset was selected for training and the rest for testing, and we calculated the accuracy of diagnosis comparing it with the dermatologist's and non-expert's evaluation.

RESULTS

The accuracy (percentage of true positive and true negative from all images) of the convolutional neural network was 83.51% and 80.23%, which was higher than the non-expert's evaluation (67.84%, 62.71%) and close to that of the expert (81.08%, 81.64%). Moreover, the convolutional neural network showed area-under-the-curve values like 0.8, 0.84 and Youden's index like 0.6795, 0.6073, which were similar score with the expert.

CONCLUSION

Although further data analysis is necessary to improve their accuracy, convolutional neural networks would be helpful to detect acral melanoma from dermoscopy images of the hands and feet.

摘要

背景/目的:肢端黑色素瘤是亚洲人群中最常见的黑色素瘤类型,由于诊断较晚,通常预后较差。我们将卷积神经网络应用于手部和足部的肢端黑色素瘤和良性痣的皮肤镜图像,并评估其在这些疾病的早期诊断中的有用性。

方法

本研究共分析了 724 张皮肤镜图像,包括肢端黑色素瘤(81 例患者的 350 张图像)和良性痣(194 例患者的 374 张图像),并通过组织病理学检查证实。为了进行 2 折交叉验证,我们将它们分为两个互斥的子集:总图像数据集的一半用于训练,另一半用于测试,并计算与皮肤科医生和非专家评估的诊断准确性比较。

结果

卷积神经网络的准确率(所有图像中真阳性和真阴性的百分比)为 83.51%和 80.23%,高于非专家的评估(67.84%,62.71%),接近专家的评估(81.08%,81.64%)。此外,卷积神经网络的曲线下面积值为 0.8、0.84,约登指数为 0.6795、0.6073,与专家的评分相似。

结论

尽管进一步的数据分析对于提高其准确性是必要的,但卷积神经网络有助于从手部和足部的皮肤镜图像中检测肢端黑色素瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d75/5841780/990f5eac88b4/pone.0193321.g001.jpg

相似文献

1
Acral melanoma detection using a convolutional neural network for dermoscopy images.
PLoS One. 2018 Mar 7;13(3):e0193321. doi: 10.1371/journal.pone.0193321. eCollection 2018.
2
An Internet-based melanoma screening system with acral volar lesion support.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5156-9. doi: 10.1109/IEMBS.2008.4650375.
3
Skin lesion classification with ensembles of deep convolutional neural networks.
J Biomed Inform. 2018 Oct;86:25-32. doi: 10.1016/j.jbi.2018.08.006. Epub 2018 Aug 10.
4
Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
Comput Methods Programs Biomed. 2018 Aug;162:221-231. doi: 10.1016/j.cmpb.2018.05.027. Epub 2018 May 19.
5
Melanoma detection by analysis of clinical images using convolutional neural network.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1373-1376. doi: 10.1109/EMBC.2016.7590963.
6
Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding.
Comput Methods Programs Biomed. 2019 Jan;168:11-19. doi: 10.1016/j.cmpb.2018.11.001. Epub 2018 Nov 20.
7
Melanoma Classification on Dermoscopy Images Using a Neural Network Ensemble Model.
IEEE Trans Med Imaging. 2017 Mar;36(3):849-858. doi: 10.1109/TMI.2016.2633551. Epub 2016 Dec 1.
8
Deep Convolutional Neural Network for Melanoma Detection using Dermoscopy Images.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1524-1527. doi: 10.1109/EMBC44109.2020.9175391.
9
Deep neural networks are superior to dermatologists in melanoma image classification.
Eur J Cancer. 2019 Sep;119:11-17. doi: 10.1016/j.ejca.2019.05.023. Epub 2019 Aug 8.
10
Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.
IEEE Trans Biomed Eng. 2017 Sep;64(9):2065-2074. doi: 10.1109/TBME.2017.2712771. Epub 2017 Jun 7.

引用本文的文献

1
Using the power of artificial intelligence to improve the diagnosis and management of nonmelanoma skin cancer.
J Res Med Sci. 2025 Apr 30;30:25. doi: 10.4103/jrms.jrms_607_24. eCollection 2025.
2
Diagnostic Accuracy of Novel Optical Imaging Techniques for Melanoma Detection: A Systematic Review and Meta-Analysis.
Int J Dermatol. 2025 Oct;64(10):1813-1824. doi: 10.1111/ijd.17828. Epub 2025 May 7.
3
The Use of Artificial Intelligence for Skin Cancer Detection in Asia-A Systematic Review.
Diagnostics (Basel). 2025 Apr 7;15(7):939. doi: 10.3390/diagnostics15070939.
4
An Automated Approach for Diagnosing Allergic Contact Dermatitis Using Deep Learning to Support Democratization of Patch Testing.
Mayo Clin Proc Digit Health. 2024 Feb 23;2(1):131-138. doi: 10.1016/j.mcpdig.2024.01.006. eCollection 2024 Mar.
5
Artificial Intelligence in the Non-Invasive Detection of Melanoma.
Life (Basel). 2024 Dec 4;14(12):1602. doi: 10.3390/life14121602.
6
Skin Cancer Diagnosis by Lesion, Physician, and Examination Type: A Systematic Review and Meta-Analysis.
JAMA Dermatol. 2025 Feb 1;161(2):135-146. doi: 10.1001/jamadermatol.2024.4382.
7
The Role of Artificial Intelligence in the Diagnosis of Melanoma.
Cureus. 2024 Sep 20;16(9):e69818. doi: 10.7759/cureus.69818. eCollection 2024 Sep.
9
Skin Type Diversity in Skin Lesion Datasets: A Review.
Curr Dermatol Rep. 2024;13(3):198-210. doi: 10.1007/s13671-024-00440-0. Epub 2024 Aug 14.
10
Image Quality Assessment Using Convolutional Neural Network in Clinical Skin Images.
JID Innov. 2024 Apr 27;4(4):100285. doi: 10.1016/j.xjidi.2024.100285. eCollection 2024 Jul.

本文引用的文献

1
Innovations and Developments in Dermatologic Non-invasive Optical Imaging and Potential Clinical Applications.
Acta Derm Venereol. 2017;Suppl 218:5-13. doi: 10.2340/00015555-2717. Epub 2017 Jul 5.
2
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
3
Non-invasive tools for the diagnosis of cutaneous melanoma.
Skin Res Technol. 2017 Aug;23(3):261-271. doi: 10.1111/srt.12350. Epub 2016 Nov 22.
4
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
IEEE Trans Med Imaging. 2016 May;35(5):1299-1312. doi: 10.1109/TMI.2016.2535302. Epub 2016 Mar 7.
5
The BRAAFF checklist: a new dermoscopic algorithm for diagnosing acral melanoma.
Br J Dermatol. 2015 Oct;173(4):1041-9. doi: 10.1111/bjd.14045. Epub 2015 Oct 1.
6
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
7
Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis.
IEEE Trans Inf Technol Biomed. 2012 Nov;16(6):1239-52. doi: 10.1109/TITB.2012.2212282. Epub 2012 Aug 8.
8
Treatment and outcomes of melanoma in acral location in Korean patients.
Yonsei Med J. 2010 Jul;51(4):562-8. doi: 10.3349/ymj.2010.51.4.562.
9
Systematic review of dermoscopy and digital dermoscopy/ artificial intelligence for the diagnosis of melanoma.
Br J Dermatol. 2009 Sep;161(3):591-604. doi: 10.1111/j.1365-2133.2009.09093.x. Epub 2009 Mar 19.
10
Biopsy of the pigmented lesion--when and how.
J Am Acad Dermatol. 2008 Nov;59(5):852-71. doi: 10.1016/j.jaad.2008.05.027. Epub 2008 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验