文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载药氧化铁纳米粒子的物理特性表征及其体内器官分布。

Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles.

机构信息

Johns Hopkins University School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, 1550 Orleans Street, CRB II, Baltimore, MD, 21231, USA.

Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Baltimore, MD, 21205, USA.

出版信息

Sci Rep. 2018 Mar 20;8(1):4916. doi: 10.1038/s41598-018-23317-2.


DOI:10.1038/s41598-018-23317-2
PMID:29559734
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5861066/
Abstract

Citrate-stabilized iron oxide magnetic nanoparticles (MNPs) were coated with one of carboxymethyl dextran (CM-dextran), polyethylene glycol-polyethylene imine (PEG-PEI), methoxy-PEG-phosphate+rutin, or dextran. They were characterized for size, zeta potential, hysteresis heating in an alternating magnetic field, dynamic magnetic susceptibility, and examined for their distribution in mouse organs following intravenous delivery. Except for PEG-PEI-coated nanoparticles, all coated nanoparticles had a negative zeta potential at physiological pH. Nanoparticle sizing by dynamic light scattering revealed an increased nanoparticle hydrodynamic diameter upon coating. Magnetic hysteresis heating changed little with coating; however, the larger particles demonstrated significant shifts of the peak of complex magnetic susceptibility to lower frequency. 48 hours following intravenous injection of nanoparticles, mice were sacrificed and tissues were collected to measure iron concentration. Iron deposition from nanoparticles possessing a negative surface potential was observed to have highest accumulation in livers and spleens. In contrast, iron deposition from positively charged PEG-PEI-coated nanoparticles was observed to have highest concentration in lungs. These preliminary results suggest a complex interplay between nanoparticle size and charge determines organ distribution of systemically-delivered iron oxide magnetic nanoparticles.

摘要

柠檬酸稳定的氧化铁磁性纳米颗粒(MNPs)被包被上羧甲基葡聚糖(CM-葡聚糖)、聚乙二醇-聚亚乙基亚胺(PEG-PEI)、甲氧基-PEG-磷酸+芦丁或葡聚糖中的一种。对其大小、Zeta 电位、交变磁场中的磁滞加热、动态磁化率进行了表征,并在静脉给药后研究了其在小鼠器官中的分布。除了 PEG-PEI 包被的纳米颗粒外,所有包被的纳米颗粒在生理 pH 值下均具有负 Zeta 电位。动态光散射法测定纳米颗粒粒径显示包被后纳米颗粒水动力直径增大。磁滞加热变化不大,但较大的颗粒表现出复杂磁导率峰值向较低频率的显著偏移。静脉注射纳米颗粒 48 小时后,处死小鼠并收集组织以测量铁浓度。具有负表面电位的纳米颗粒中铁的沉积在肝脏和脾脏中的积累最高。相比之下,带正电荷的 PEG-PEI 包被的纳米颗粒中铁的沉积在肺部的浓度最高。这些初步结果表明,纳米颗粒大小和电荷之间的复杂相互作用决定了系统给药的氧化铁磁性纳米颗粒的器官分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/79d0e700a0ea/41598_2018_23317_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/5565bc58fcc3/41598_2018_23317_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/e51fb4faba36/41598_2018_23317_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/9a6af1042169/41598_2018_23317_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/b4f02d3ece0c/41598_2018_23317_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/84a842022a3e/41598_2018_23317_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/79d0e700a0ea/41598_2018_23317_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/5565bc58fcc3/41598_2018_23317_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/e51fb4faba36/41598_2018_23317_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/9a6af1042169/41598_2018_23317_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/b4f02d3ece0c/41598_2018_23317_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/84a842022a3e/41598_2018_23317_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e29/5861066/79d0e700a0ea/41598_2018_23317_Fig6_HTML.jpg

相似文献

[1]
Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles.

Sci Rep. 2018-3-20

[2]
Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug.

Biomed Pharmacother. 2016-3-26

[3]
PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice.

Bioconjug Chem. 2005

[4]
Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles.

Biomaterials. 2011-9

[5]
Heat-generating iron oxide nanocubes: subtle "destructurators" of the tumoral microenvironment.

ACS Nano. 2014-4-21

[6]
In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting.

J Biomed Mater Res B Appl Biomater. 2014-5

[7]
Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T/T Dual-Contrast Magnetic Resonance Imaging.

Int J Nanomedicine. 2019-10-24

[8]
Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture.

Int J Mol Sci. 2012

[9]
Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting.

Biomaterials. 2010-12-21

[10]
Preparation of highly dispersible and tumor-accumulative, iron oxide nanoparticles Multi-point anchoring of PEG-b-poly(4-vinylbenzylphosphonate) improves performance significantly.

Colloids Surf B Biointerfaces. 2011-8-22

引用本文的文献

[1]
Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications.

Nanoscale Adv. 2025-3-24

[2]
Nanoscintillator Coating: A Key Parameter That Strongly Impacts Internalization, Biocompatibility, and Therapeutic Efficacy in Pancreatic Cancer Models.

Small Sci. 2024-3-28

[3]
The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review).

Sovrem Tekhnologii Med. 2023

[4]
Amphoteric β-cyclodextrin coated iron oxide magnetic nanoparticles: new insights into synthesis and application in MRI.

Nanoscale Adv. 2024-11-4

[5]
Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures.

J Funct Biomater. 2024-6-19

[6]
Biodistribution Analysis of Peptide-Coated Magnetic Iron Nanoparticles: A Simple and Quantitative Method.

Mol Pharm. 2024-2-5

[7]
Nanoparticle-based materials in anticancer drug delivery: Current and future prospects.

Heliyon. 2023-10-20

[8]
Strategies for Delivering Nanoparticles across Tumor Blood Vessels.

Adv Funct Mater. 2021-2-17

[9]
Iron oxide nanoparticles carried by probiotics for iron absorption: a systematic review.

J Nanobiotechnology. 2023-4-10

[10]
Impact of administration route on nanocarrier biodistribution in a murine colitis model.

J Exp Nanosci. 2022

本文引用的文献

[1]
The biocorona: a challenge for the biomedical application of nanoparticles.

Nanotechnol Rev. 2017-8

[2]
Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine.

Chem Rev. 2017-9-1

[3]
Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles.

Sci Rep. 2017-7-27

[4]
Magnetic Nanoparticles: New Perspectives in Drug Delivery.

Curr Pharm Des. 2017

[5]
Magnetic Nanoparticles in Cancer Theranostics.

Theranostics. 2015-9-1

[6]
Anticancer Drug Delivery: An Update on Clinically Applied Nanotherapeutics.

Drugs. 2015-9

[7]
The Dartmouth Center for Cancer Nanotechnology Excellence: magnetic hyperthermia.

Nanomedicine (Lond). 2015

[8]
Tumor cell targeting by iron oxide nanoparticles is dominated by different factors in vitro versus in vivo.

PLoS One. 2015-2-19

[9]
Evaluation of a PSMA-targeted BNF nanoparticle construct.

Nanoscale. 2015-3-14

[10]
Size-Dependent Relaxation Properties of Monodisperse Magnetite Nanoparticles Measured Over Seven Decades of Frequency by AC Susceptometry.

IEEE Trans Magn. 2013-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索