文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nanoparticle-based materials in anticancer drug delivery: Current and future prospects.

作者信息

Ajith Saniha, Almomani Fares, Elhissi Abdelbary, Husseini Ghaleb A

机构信息

Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar.

College of Pharmacy, QU Health, Qatar University, Doha, Qatar.

出版信息

Heliyon. 2023 Oct 20;9(11):e21227. doi: 10.1016/j.heliyon.2023.e21227. eCollection 2023 Nov.


DOI:10.1016/j.heliyon.2023.e21227
PMID:37954330
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10637937/
Abstract

The past decade has witnessed a breakthrough in novel strategies to treat cancer. One of the most common cancer treatment modalities is chemotherapy which involves administering anti-cancer drugs to the body. However, these drugs can lead to undesirable side effects on healthy cells. To overcome this challenge and improve cancer cell targeting, many novel nanocarriers have been developed to deliver drugs directly to the cancerous cells and minimize effects on the healthy tissues. The majority of the research studies conclude that using drugs encapsulated in nanocarriers is a much safer and more effective alternative than delivering the drug alone in its free form. This review provides a summary of the types of nanocarriers mainly studied for cancer drug delivery, namely: liposomes, polymeric micelles, dendrimers, magnetic nanoparticles, mesoporous nanoparticles, gold nanoparticles, carbon nanotubes and quantum dots. In this review, the synthesis, applications, advantages, disadvantages, and previous studies of these nanomaterials are discussed in detail. Furthermore, the future opportunities and possible challenges of translating these materials into clinical applications are also reported.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/e5f5bb9fe3b7/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/7ad62cb11bc8/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/ff8bdcc6a5ed/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/bba1fae83061/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/e7ce9d24bb44/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/ddfed80d0dfd/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/1b896e5b4645/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/880306feeb08/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/5bc52bf8b324/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/16d8bf2d1234/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/38f9fb24a608/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/a5a3706c484d/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/e5f5bb9fe3b7/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/7ad62cb11bc8/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/ff8bdcc6a5ed/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/bba1fae83061/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/e7ce9d24bb44/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/ddfed80d0dfd/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/1b896e5b4645/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/880306feeb08/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/5bc52bf8b324/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/16d8bf2d1234/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/38f9fb24a608/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/a5a3706c484d/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee7/10637937/e5f5bb9fe3b7/gr12.jpg

相似文献

[1]
Nanoparticle-based materials in anticancer drug delivery: Current and future prospects.

Heliyon. 2023-10-20

[2]
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

Eur J Pharm Biopharm. 2015-6

[3]
Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles.

Nanomedicine (Lond). 2023-2

[4]
Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives.

Int J Nanomedicine. 2021

[5]
Nanocarriers for anticancer drugs--new trends in nanomedicine.

Curr Drug Metab. 2013-6

[6]
Application of chitosan-based nanocarriers in tumor-targeted drug delivery.

Mol Biotechnol. 2015-3

[7]
Hyaluronic Acid-Based Nanocarriers for Anticancer Drug Delivery.

Polymers (Basel). 2023-5-16

[8]
Concepts on Smart Nano-Based Drug Delivery System.

Recent Pat Nanotechnol. 2022

[9]
Potential of Nanocarrier-Based Drug Delivery Systems for Brain Targeting: A Current Review of Literature.

Int J Nanomedicine. 2021

[10]
Drug Delivery Systems Based on Polymeric Micelles and Ultrasound: A Review.

Curr Pharm Des. 2016

引用本文的文献

[1]
The Potential of Amphiphilic Cyclodextrins as Carriers for Therapeutic Purposes: A Short Overview.

Pharmaceutics. 2025-8-21

[2]
Inhalable Nanomaterial Discoveries for Lung Cancer Therapy: A Review.

Pharmaceutics. 2025-7-31

[3]
Emerging trends in synthesis, characterization, and mechanism of action of antibody-drug and antibody-nanoparticle conjugates.

Discov Nano. 2025-8-18

[4]
Isorhamnetin: Reviewing Recent Developments in Anticancer Mechanisms and Nanoformulation-Driven Delivery.

Int J Mol Sci. 2025-7-30

[5]
Unlocking the dual healing powers of plant-based metallic nanoparticles: managing diabetes and tackling male infertility challenges.

Front Endocrinol (Lausanne). 2025-7-4

[6]
Biological Nanocarriers in Cancer Therapy: Cutting Edge Innovations in Precision Drug Delivery.

Biomolecules. 2025-5-31

[7]
Coumarins in Anticancer Therapy: Mechanisms of Action, Potential Applications and Research Perspectives.

Pharmaceutics. 2025-5-1

[8]
Multi-functional near-infrared fluorescent polymer dot-siRNA for gene expression regulation.

J Mater Chem B. 2025-2-5

[9]
Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium.

J Nanobiotechnology. 2024-10-12

[10]
Temperature-modulated interactions between thermoresponsive strong cationic copolymer-brush-grafted silica beads and biomolecules.

Heliyon. 2024-7-20

本文引用的文献

[1]
Drug delivery to the central nervous system.

Nat Rev Mater. 2022-4

[2]
Heteroatoms (B, N, S) doped quantum dots as potential drug delivery system for isoniazid: insight from DFT, NCI, and QTAIM.

Heliyon. 2022-12-24

[3]
Gefitinib conjugated PEG passivated graphene quantum dots incorporated PLA microspheres for targeted anticancer drug delivery.

Heliyon. 2022-12-22

[4]
pH-responsive and targeted delivery of chrysin via folic acid-functionalized mesoporous silica nanocarrier for breast cancer therapy.

Int J Pharm. 2023-1-25

[5]
Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer.

J Control Release. 2023-1

[6]
Gefitinib-loaded polydopamine-coated hollow mesoporous silica nanoparticle for gastric cancer application.

Int J Pharm. 2022-12-15

[7]
Tailored cancer therapy by magnetic nanoparticle hyperthermia: A virtual scenario simulation method.

Comput Methods Programs Biomed. 2022-11

[8]
Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis.

J Control Release. 2022-12

[9]
Liposomes encapsulating methylene blue and acridine orange: An approach for phototherapy of skin cancer.

Colloids Surf B Biointerfaces. 2022-12

[10]
Adsorption of Thiotepa anticancer drugs on the BC nanotube as a promising nanocarriers for drug delivery.

J Biotechnol. 2022-11-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索