Suppr超能文献

用于药物筛选、疾病模型和组织工程的血管化微流控器官芯片。

Vascularized microfluidic organ-chips for drug screening, disease models and tissue engineering.

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.

出版信息

Curr Opin Biotechnol. 2018 Aug;52:116-123. doi: 10.1016/j.copbio.2018.03.011. Epub 2018 Apr 12.

Abstract

Vascularization of micro-tissues in vitro has enabled formation of tissues larger than those limited by diffusion with appropriate nutrient/gas exchange as well as waste elimination. Furthermore, angiocrine signaling from the vasculature may be essential in mimicking organ-level functions in these micro-tissues. In drug screening applications, the presence of an appropriate blood-organ barrier in the form of a vasculature and its supporting cells (pericytes, appropriate stromal cells) may be essential to reproducing organ-scale drug delivery pharmacokinetics. Cutting-edge techniques including 3D bioprinting and in vitro angiogenesis and vasculogenesis could be applied to vascularize a range of tissues and organoids. Herein, we describe the latest developments in vascularization and prevascularization of micro-tissues and provide an outlook on potential future strategies.

摘要

体外微组织的血管生成使组织的形成大于受扩散限制的组织,因为具有适当的营养/气体交换以及废物清除。此外,血管中的血管生成信号对于模拟这些微组织中的器官水平功能可能是必不可少的。在药物筛选应用中,适当的血-器官屏障(以血管及其支持细胞(周细胞、适当的基质细胞)的形式)的存在对于复制器官水平的药物输送药代动力学可能是必不可少的。包括 3D 生物打印和体外血管生成和血管发生在内的前沿技术可用于使各种组织和类器官血管化。本文描述了微组织血管生成和预血管化的最新进展,并展望了潜在的未来策略。

相似文献

2
In Vitro Strategies to Vascularize 3D Physiologically Relevant Models.体外策略使 3D 生理相关模型血管化。
Adv Sci (Weinh). 2021 Oct;8(19):e2100798. doi: 10.1002/advs.202100798. Epub 2021 Aug 5.
3
Microfluidic bioprinting for organ-on-a-chip models.微流控生物打印在器官芯片模型中的应用。
Drug Discov Today. 2019 Jun;24(6):1248-1257. doi: 10.1016/j.drudis.2019.03.025. Epub 2019 Mar 30.
4
Microfluidic techniques for development of 3D vascularized tissue.用于三维血管化组织发育的微流控技术
Biomaterials. 2014 Aug;35(26):7308-25. doi: 10.1016/j.biomaterials.2014.04.091. Epub 2014 Jun 3.
5
Bottom-up biofabrication using microfluidic techniques.基于微流控技术的自下而上生物制造。
Biofabrication. 2018 Sep 17;10(4):044103. doi: 10.1088/1758-5090/aadef9.
9
Bioprinting for vascular and vascularized tissue biofabrication.用于血管和血管化组织生物制造的生物打印
Acta Biomater. 2017 Mar 15;51:1-20. doi: 10.1016/j.actbio.2017.01.035. Epub 2017 Jan 11.

引用本文的文献

9
Cell reprogramming: methods, mechanisms and applications.细胞重编程:方法、机制与应用
Cell Regen. 2025 Mar 27;14(1):12. doi: 10.1186/s13619-025-00229-x.

本文引用的文献

7
Assembly of functionally integrated human forebrain spheroids.功能性整合的人类前脑类器官的组装。
Nature. 2017 May 4;545(7652):54-59. doi: 10.1038/nature22330. Epub 2017 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验