The Affiliated Hospital of Stomatology, College of Medicine , Zhejiang University , Hangzhou , Zhejiang 310006 , China.
ACS Appl Mater Interfaces. 2018 May 9;10(18):15449-15460. doi: 10.1021/acsami.8b02798. Epub 2018 Apr 25.
Successful osseointegration of orthopaedic and orthodontic implants is dependent on a competition between osteogenesis and bacterial contamination on the implant-tissue interface. Previously, by taking advantage of the highly interactive capabilities of silver nanoparticles (AgNPs), we effectively introduced an antimicrobial effect to metal implant materials using an AgNP/poly(dl-lactic- co-glycolic acid) (PLGA) coating. Although electrical forces have been shown to promote osteogenesis, creating practical materials and devices capable of harnessing these forces to induce bone regeneration remains challenging. Here, we applied galvanic reduction-oxidation (redox) principles to engineer a nanoscale galvanic redox system between AgNPs and 316L stainless steel alloy (316L-SA). Characterized by scanning electron microscopy , energy-dispersive X-ray spectroscopy, atomic force microscopy, Kelvin probe force microscopy, and contact angle measurement, the surface properties of the yield AgNP/PLGA-coated 316L-SA (SNPSA) material presented a significantly increased positive surface potential, hydrophilicity, surface fractional polarity, and surface electron accepting/donating index. Importantly, in addition to its bactericidal property, SNPSA's surface demonstrated a novel osteogenic bioactivity by promoting peri-implant bone growth. This is the first report describing the conversion of a normally deleterious galvanic redox reaction into a biologically beneficial function on a biomedical metal material. Overall, this study details an innovative strategy to design multifunctional biomaterials using a controlled galvanic redox reaction, which has broad applications in material development and clinical practice.
骨科和正畸植入物的成功骨整合取决于成骨作用和细菌污染在植入物-组织界面之间的竞争。以前,我们利用银纳米粒子(AgNPs)的高度交互能力,通过 AgNP/聚(DL-丙交酯-共-乙交酯)(PLGA)涂层有效为金属植入材料引入了抗菌效果。尽管已经证明电场力可以促进成骨作用,但创造能够利用这些力来诱导骨再生的实用材料和设备仍然具有挑战性。在这里,我们应用了电偶腐蚀还原(redox)原理来设计 AgNPs 和 316L 不锈钢合金(316L-SA)之间的纳米级电偶 redox 系统。通过扫描电子显微镜、能量色散 X 射线光谱、原子力显微镜、开尔文探针力显微镜和接触角测量对其进行了表征,所得 AgNP/PLGA 涂层 316L-SA(SNPSA)材料的表面特性呈现出明显增加的正表面电位、亲水性、表面分极度、表面电子接受/供体指数。重要的是,除了其杀菌性能外,SNPSA 的表面还通过促进植入物周围骨生长表现出一种新型的成骨生物活性。这是首次描述将正常有害的电偶腐蚀还原反应转化为生物有益功能的报告,这在生物医学金属材料的设计中具有广阔的应用前景。总的来说,本研究详细介绍了一种使用受控电偶腐蚀还原反应设计多功能生物材料的创新策略,该策略在材料开发和临床实践中有广泛的应用。