From the G.B. Bietti Foundation IRCCS (Savini, Schiano Lomoriello), Rome, Italy; the Department of Ophthalmology (Negishi), Keio University School of Medicine, Hospital, Tokyo, Japan; Stein Eye Institute (Hoffer), University of California, Los Angeles, and St. Mary's Eye Center (Hoffer), Santa Monica, California, USA.
From the G.B. Bietti Foundation IRCCS (Savini, Schiano Lomoriello), Rome, Italy; the Department of Ophthalmology (Negishi), Keio University School of Medicine, Hospital, Tokyo, Japan; Stein Eye Institute (Hoffer), University of California, Los Angeles, and St. Mary's Eye Center (Hoffer), Santa Monica, California, USA.
J Cataract Refract Surg. 2018 Jun;44(6):701-708. doi: 10.1016/j.jcrs.2018.03.027. Epub 2018 Jun 1.
To evaluate the results of intraocular lens (IOL) power calculation using different corneal power measurements provided by an optical biometer combined with a dual Scheimpflug analyzer and a Placido disk topographer (Galilei G6).
G.B. Bietti Foundation, Rome, Italy, and Keio University Hospital, Tokyo, Japan.
Evaluation of diagnostic technology.
Consecutive patients having cataract surgery were enrolled. The IOL power was calculated with the Barrett Universal II, Haigis, Hoffer Q, Holladay 1, and SRK/T formulas. Different options were used to calculate the corneal power: simulated keratometry (K) based on anterior corneal surface measurements only and total corneal power (TCP) based on ray tracing through both corneal surfaces. Three TCP measurements (TCP1, TCP2, and TCP-IOL) were evaluated.
The study analyzed 118 eyes. The mean values of simulated K (43.74 diopters [D] ± 1.40 [SD]), TCP1 (43.13 ± 1.35 D), TCP2 (41.87 ± 1.30 D), and TCP-IOL (42.62 ± 1.35 D) were significantly different (P < .0001). The best results were obtained using simulated K: the median absolute error ranged between 0.22 D and 0.29 D and the percentage of eyes with a prediction error of ±0.50 D or less, between 76.2% and 84.7%, depending on the formula. After constant optimization, the results using any TCP value and simulated K were similar with no statistically significant differences.
Biometric measurements provided by the Scheimpflug-Placido optical biometer can be used to accurately calculate the IOL power. Simulated K and TCP led to similar outcomes after constant optimization.
评估使用光学生物测量仪结合双 Scheimpflug 分析仪和 Placido 盘角膜地形图仪(Galilei G6)提供的不同角膜屈光力测量值计算人工晶状体(IOL)屈光力的结果。
意大利罗马 G.B. Bietti 基金会和日本庆应义塾大学医院。
诊断技术评估。
连续纳入接受白内障手术的患者。使用 Barrett Universal II、Haigis、Hoffer Q、Holladay 1 和 SRK/T 公式计算 IOL 屈光力。使用不同的选项计算角膜屈光力:仅基于前角膜表面测量的模拟角膜曲率(K)和通过两个角膜表面进行光线追踪的总角膜屈光力(TCP)。评估了三种 TCP 测量值(TCP1、TCP2 和 TCP-IOL)。
该研究分析了 118 只眼。模拟 K(43.74 屈光度 [D]±1.40 [SD])、TCP1(43.13±1.35 D)、TCP2(41.87±1.30 D)和 TCP-IOL(42.62±1.35 D)的平均值差异有统计学意义(P<.0001)。使用模拟 K 可获得最佳结果:中位数绝对误差在 0.22 D 到 0.29 D 之间,公式预测误差在±0.50 D 或以下的眼的百分比在 76.2%到 84.7%之间。经过恒定优化后,使用任何 TCP 值和模拟 K 的结果相似,无统计学差异。
Scheimpflug-Placido 光学生物测量仪提供的生物测量值可用于准确计算 IOL 屈光力。经过恒定优化后,模拟 K 和 TCP 可产生相似的结果。