Suppr超能文献

无标度脉冲神经网络抗脉冲噪声干扰

Anti-Disturbance of Scale-Free Spiking Neural Network against Impulse Noise.

作者信息

Guo Lei, Guo Minxin, Wu Youxi, Xu Guizhi

机构信息

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.

Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.

出版信息

Brain Sci. 2023 May 22;13(5):837. doi: 10.3390/brainsci13050837.

Abstract

The bio-brain presents robustness function to external stimulus through its self-adaptive regulation and neural information processing. Drawing from the advantages of the bio-brain to investigate the robustness function of a spiking neural network (SNN) is conducive to the advance of brain-like intelligence. However, the current brain-like model is insufficient in biological rationality. In addition, its evaluation method for anti-disturbance performance is inadequate. To explore the self-adaptive regulation performance of a brain-like model with more biological rationality under external noise, a scale-free spiking neural network(SFSNN) is constructed in this study. Then, the anti-disturbance ability of the SFSNN against impulse noise is investigated, and the anti-disturbance mechanism is further discussed. Our simulation results indicate that: (i) our SFSNN has anti-disturbance ability against impulse noise, and the high-clustering SFSNN outperforms the low-clustering SFSNN in terms of anti-disturbance performance. (ii) The neural information processing in the SFSNN under external noise is clarified, which is a dynamic chain effect of the neuron firing, the synaptic weight, and the topological characteristic. (iii) Our discussion hints that an intrinsic factor of the anti-disturbance ability is the synaptic plasticity, and the network topology is a factor that affects the anti-disturbance ability at the level of performance.

摘要

生物大脑通过其自适应调节和神经信息处理对外界刺激呈现出鲁棒性功能。借鉴生物大脑的优势来研究脉冲神经网络(SNN)的鲁棒性功能,有利于类脑智能的发展。然而,当前的类脑模型在生物合理性方面存在不足。此外,其抗干扰性能的评估方法也不够完善。为了探索在外部噪声下具有更高生物合理性的类脑模型的自适应调节性能,本研究构建了一个无标度脉冲神经网络(SFSNN)。然后,研究了SFSNN对脉冲噪声的抗干扰能力,并进一步探讨了抗干扰机制。我们的仿真结果表明:(i)我们的SFSNN具有对脉冲噪声的抗干扰能力,并且高聚类的SFSNN在抗干扰性能方面优于低聚类的SFSNN。(ii)阐明了外部噪声下SFSNN中的神经信息处理,这是神经元放电、突触权重和拓扑特征的动态连锁效应。(iii)我们的讨论表明,抗干扰能力的一个内在因素是突触可塑性,而网络拓扑是在性能层面影响抗干扰能力的一个因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验