Suppr超能文献

通过神经网络建模和TensorFlow解决傅里叶叠层成像问题。

Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow.

作者信息

Jiang Shaowei, Guo Kaikai, Liao Jun, Zheng Guoan

机构信息

Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.

These authors contributed equally to this work.

出版信息

Biomed Opt Express. 2018 Jun 25;9(7):3306-3319. doi: 10.1364/BOE.9.003306. eCollection 2018 Jul 1.

Abstract

Fourier ptychography is a recently developed imaging approach for large field-of-view and high-resolution microscopy. Here we model the Fourier ptychographic forward imaging process using a convolutional neural network (CNN) and recover the complex object information in a network training process. In this approach, the input of the network is the point spread function in the spatial domain or the coherent transfer function in the Fourier domain. The object is treated as 2D learnable weights of a convolutional or a multiplication layer. The output of the network is modeled as the loss function we aim to minimize. The batch size of the network corresponds to the number of captured low-resolution images in one forward/backward pass. We use a popular open-source machine learning library, TensorFlow, for setting up the network and conducting the optimization process. We analyze the performance of different learning rates, different solvers, and different batch sizes. It is shown that a large batch size with the Adam optimizer achieves the best performance in general. To accelerate the phase retrieval process, we also discuss a strategy to implement Fourier-magnitude projection using a multiplication neural network model. Since convolution and multiplication are the two most-common operations in imaging modeling, the reported approach may provide a new perspective to examine many coherent and incoherent systems. As a demonstration, we discuss the extensions of the reported networks for modeling single-pixel imaging and structured illumination microscopy (SIM). 4-frame resolution doubling is demonstrated using a neural network for SIM. The link between imaging systems and neural network modeling may enable the use of machine-learning hardware such as neural engine and tensor processing unit for accelerating the image reconstruction process. We have made our implementation code open-source for researchers.

摘要

傅里叶叠层成像术是一种最近开发的用于大视场和高分辨率显微镜成像的方法。在此,我们使用卷积神经网络(CNN)对傅里叶叠层成像的正向成像过程进行建模,并在网络训练过程中恢复复杂的物体信息。在这种方法中,网络的输入是空间域中的点扩散函数或傅里叶域中的相干传递函数。物体被视为卷积层或乘法层的二维可学习权重。网络的输出被建模为我们旨在最小化的损失函数。网络的批量大小对应于一次正向/反向传播中捕获的低分辨率图像的数量。我们使用一个流行的开源机器学习库TensorFlow来构建网络并进行优化过程。我们分析了不同学习率、不同求解器和不同批量大小的性能。结果表明,使用Adam优化器时大的批量大小通常能实现最佳性能。为了加速相位恢复过程,我们还讨论了一种使用乘法神经网络模型实现傅里叶幅度投影的策略。由于卷积和乘法是成像建模中最常见的两种操作,所报道的方法可能为研究许多相干和非相干系统提供一个新的视角。作为一个示例,我们讨论了所报道网络在单像素成像和结构照明显微镜(SIM)建模方面的扩展。使用用于SIM的神经网络实现了4倍分辨率提升。成像系统与神经网络建模之间的联系可能使得能够使用诸如神经引擎和张量处理单元等机器学习硬件来加速图像重建过程。我们已将实现代码开源供研究人员使用。

相似文献

10
Beamforming-integrated neural networks for ultrasound imaging.基于波束形成的神经网络超声成像技术
Ultrasonics. 2025 Jan;145:107474. doi: 10.1016/j.ultras.2024.107474. Epub 2024 Oct 3.

引用本文的文献

1
Uncertainty-aware Fourier ptychography.不确定性感知傅里叶叠层成像术。
Light Sci Appl. 2025 Jul 7;14(1):236. doi: 10.1038/s41377-025-01915-w.
2
Dome-APIC illumination design for high space-bandwidth product analytic imaging.用于高空间带宽积分析成像的穹顶-顶点照明设计
Biomed Opt Express. 2025 Mar 27;16(4):1666-1677. doi: 10.1364/BOE.555541. eCollection 2025 Apr 1.

本文引用的文献

5
Resolution doubling with a reduced number of image acquisitions.通过减少图像采集数量实现分辨率加倍。
Biomed Opt Express. 2015 Jul 17;6(8):2946-52. doi: 10.1364/BOE.6.002946. eCollection 2015 Aug 1.
10
Ptychographic microscope for three-dimensional imaging.用于三维成像的叠层成像显微镜。
Opt Express. 2014 May 19;22(10):12513-23. doi: 10.1364/OE.22.012513.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验