Suppr超能文献

通过像差校正的闭式复场重建实现高分辨率、大视场无标记成像。

High-resolution, large field-of-view label-free imaging via aberration-corrected, closed-form complex field reconstruction.

作者信息

Cao Ruizhi, Shen Cheng, Yang Changhuei

机构信息

Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.

出版信息

Nat Commun. 2024 Jun 3;15(1):4713. doi: 10.1038/s41467-024-49126-y.

Abstract

Computational imaging methods empower modern microscopes to produce high-resolution, large field-of-view, aberration-free images. Fourier ptychographic microscopy can increase the space-bandwidth product of conventional microscopy, but its iterative reconstruction methods are prone to parameter selection and tend to fail under excessive aberrations. Spatial Kramers-Kronig methods can analytically reconstruct complex fields, but is limited by aberration or providing extended resolution enhancement. Here, we present APIC, a closed-form method that weds the strengths of both methods while using only NA-matching and darkfield measurements. We establish an analytical phase retrieval framework which demonstrates the feasibility of analytically reconstructing the complex field associated with darkfield measurements. APIC can retrieve complex aberrations of an imaging system with no additional hardware and avoids iterative algorithms, requiring no human-designed convergence metrics while always obtaining a closed-form complex field solution. We experimentally demonstrate that APIC gives correct reconstruction results where Fourier ptychographic microscopy fails when constrained to the same number of measurements. APIC achieves 2.8 times faster computation using image tile size of 256 (length-wise), is robust against aberrations compared to Fourier ptychographic microscopy, and capable of addressing aberrations whose maximal phase difference exceeds 3.8π when using a NA 0.25 objective in experiment.

摘要

计算成像方法使现代显微镜能够生成高分辨率、大视场、无像差的图像。傅里叶叠层显微镜可以提高传统显微镜的空间带宽积,但其迭代重建方法容易出现参数选择问题,并且在像差过大时容易失败。空间克莱默斯-克勒尼希方法可以解析重建复场,但受到像差的限制或提供的分辨率增强有限。在这里,我们提出了APIC,这是一种封闭形式的方法,它结合了两种方法的优点,同时只使用数值孔径匹配和暗场测量。我们建立了一个解析相位恢复框架,证明了解析重建与暗场测量相关的复场的可行性。APIC可以在不增加额外硬件的情况下恢复成像系统的复杂像差,避免了迭代算法,不需要人工设计的收敛指标,同时总能获得封闭形式的复场解。我们通过实验证明,在测量次数相同的情况下,当傅里叶叠层显微镜失败时,APIC能给出正确的重建结果。使用256(纵向)的图像块大小,APIC的计算速度提高了2.8倍,与傅里叶叠层显微镜相比,它对像差具有更强的鲁棒性,并且在实验中使用数值孔径为0.25的物镜时,能够处理最大相位差超过3.8π的像差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c4/11148160/8e5f2674ba35/41467_2024_49126_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验