Guerrini Luca, Alvarez-Puebla Ramon A, Pazos-Perez Nicolas
Departamento de Quimica Fisica e Inorganica and EMaS, Universitat Rovira i Virgili Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain.
Institución Catalana de Investigación y Estudios Avanzados, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
Materials (Basel). 2018 Jul 6;11(7):1154. doi: 10.3390/ma11071154.
Due to the high surface: volume ratio and the extraordinary properties arising from the nanoscale (optical, electric, magnetic, etc.), nanoparticles (NPs) are excellent candidates for multiple applications. In this context, nanoscience is opening a wide range of modern technologies in biological and biomedical fields, among others. However, one of the main drawbacks that still delays its fast evolution and effectiveness is related to the behavior of nanomaterials in the presence of biological fluids. Unfortunately, biological fluids are characterized by high ionic strengths which usually induce NP aggregation. Besides this problem, the high content in biomacromolecules—such as lipids, sugars, nucleic acids and, especially, proteins—also affects NP stability and its viability for some applications due to, for example, the formation of the protein corona around the NPs. Here, we will review the most common strategies to achieve stable NPs dispersions in high ionic strength fluids and, also, antifouling strategies to avoid the protein adsorption.
由于高的表面与体积比以及纳米尺度产生的非凡特性(光学、电学、磁学等),纳米颗粒(NPs)是多种应用的理想候选者。在此背景下,纳米科学正在生物和生物医学等领域开启广泛的现代技术。然而,仍然阻碍其快速发展和有效性的主要缺点之一与纳米材料在生物流体存在下的行为有关。不幸的是,生物流体的特点是离子强度高,这通常会导致NP聚集。除了这个问题,生物大分子(如脂质、糖类、核酸,尤其是蛋白质)的高含量也会影响NP的稳定性及其在某些应用中的可行性,例如,由于NP周围形成蛋白质冠层。在这里,我们将综述在高离子强度流体中实现稳定NP分散体的最常见策略,以及避免蛋白质吸附的防污策略。