Suppr超能文献

用于编程多细胞形态和模式的合成细菌细胞间粘附工具箱。

A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns.

机构信息

Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.

Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.

出版信息

Cell. 2018 Jul 26;174(3):649-658.e16. doi: 10.1016/j.cell.2018.06.041. Epub 2018 Jul 19.

Abstract

Synthetic multicellular systems hold promise as models for understanding natural development of biofilms and higher organisms and as tools for engineering complex multi-component metabolic pathways and materials. However, such efforts require tools to adhere cells into defined morphologies and patterns, and these tools are currently lacking. Here, we report a 100% genetically encoded synthetic platform for modular cell-cell adhesion in Escherichia coli, which provides control over multicellular self-assembly. Adhesive selectivity is provided by a library of outer membrane-displayed nanobodies and antigens with orthogonal intra-library specificities, while affinity is controlled by intrinsic adhesin affinity, competitive inhibition, and inducible expression. We demonstrate the resulting capabilities for quantitative rational design of well-defined morphologies and patterns through homophilic and heterophilic interactions, lattice-like self-assembly, phase separation, differential adhesion, and sequential layering. Compatible with synthetic biology standards, this adhesion toolbox will enable construction of high-level multicellular designs and shed light on the evolutionary transition to multicellularity.

摘要

合成多细胞系统有望成为理解生物膜和高等生物自然发育的模型,以及用于工程复杂多组分代谢途径和材料的工具。然而,这些努力需要将细胞附着到特定形态和模式的工具,而这些工具目前还不存在。在这里,我们报告了一种用于大肠杆菌中模块化细胞间粘附的 100%基因编码的合成平台,该平台提供了对多细胞自组装的控制。通过具有正交库内特异性的外膜展示纳米抗体和抗原文库提供了粘附选择性,而亲和力则由固有粘附素亲和力、竞争性抑制和诱导表达控制。我们通过同亲性和异亲性相互作用、晶格状自组装、相分离、差异粘附和顺序分层展示了通过定量合理设计明确定义的形态和模式的能力。与合成生物学标准兼容,这种粘附工具箱将能够构建高级多细胞设计,并为向多细胞性的进化转变提供启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验