Suppr超能文献

血管病理生理学多尺度建模的新兴趋势:芯片器官和 3D 打印。

Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing.

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.

Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Material Sciences, Texas A&M University, College Station, TX, 77843, USA; Center for Remote Health and Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA.

出版信息

Biomaterials. 2019 Mar;196:2-17. doi: 10.1016/j.biomaterials.2018.07.029. Epub 2018 Jul 23.

Abstract

Most biomedical and pharmaceutical research of the human vascular system aims to unravel the complex mechanisms that drive disease progression from molecular to organ levels. The knowledge gained can then be used to innovate diagnostic and treatment strategies which can ultimately be determined precisely for patients. Despite major advancements, current modeling strategies are often limited at identifying, quantifying, and dissecting specific cellular and molecular targets that regulate human vascular diseases. Therefore, development of multiscale modeling approaches are needed that can advance our knowledge and facilitate the design of next-generation therapeutic approaches in vascular diseases. This article critically reviews animal models, static in vitro systems, and dynamic in vitro culture systems currently used to model vascular diseases. A leading emphasis on the potential of emerging approaches, specifically organ-on-a-chip and three-dimensional (3D) printing, to recapitulate the innate human vascular physiology and anatomy is described. The applications of these approaches and future outlook in designing and screening novel therapeutics are also presented.

摘要

大多数针对人体血管系统的生物医学和制药研究旨在揭示从分子水平到器官水平驱动疾病进展的复杂机制。然后,可以利用所获得的知识创新诊断和治疗策略,最终为患者量身定制。尽管取得了重大进展,但目前的建模策略在识别、量化和剖析调节人类血管疾病的特定细胞和分子靶标方面往往受到限制。因此,需要开发多尺度建模方法,以增进我们的知识并促进血管疾病的下一代治疗方法的设计。本文批判性地回顾了目前用于模拟血管疾病的动物模型、静态体外系统和动态体外培养系统。重点介绍了新兴方法(特别是器官芯片和三维 (3D) 打印)在再现先天人体血管生理学和解剖结构方面的潜力。还介绍了这些方法的应用以及在设计和筛选新型治疗方法方面的未来展望。

相似文献

4
Lung-on-a-chip: the future of respiratory disease models and pharmacological studies.肺芯片:呼吸疾病模型和药理学研究的未来。
Crit Rev Biotechnol. 2020 Mar;40(2):213-230. doi: 10.1080/07388551.2019.1710458. Epub 2020 Jan 6.
6
3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models.3D 生物打印的癌症芯片:器官型体外模型的升级。
Trends Biotechnol. 2022 Apr;40(4):432-447. doi: 10.1016/j.tibtech.2021.08.007. Epub 2021 Sep 20.
7
Organ-on-a-chip systems for vascular biology.用于血管生物学的芯片上器官系统。
J Mol Cell Cardiol. 2021 Oct;159:1-13. doi: 10.1016/j.yjmcc.2021.06.002. Epub 2021 Jun 9.
9

引用本文的文献

3
Engineering in vitro vascular microsystems.体外血管微系统工程
Microsyst Nanoeng. 2025 May 22;11(1):100. doi: 10.1038/s41378-025-00956-w.
7
Contribution of the ELRs to the development of advanced models.ELRs对先进模型发展的贡献。
Front Bioeng Biotechnol. 2024 Apr 8;12:1363865. doi: 10.3389/fbioe.2024.1363865. eCollection 2024.
10
Organ-On-A-Chip: An Emerging Research Platform.器官芯片:一种新兴的研究平台。
Organogenesis. 2023 Dec 31;19(1):2278236. doi: 10.1080/15476278.2023.2278236. Epub 2023 Nov 15.

本文引用的文献

1
3D Bioprinting of Vessel-like Structures with Multilevel Fluidic Channels.具有多级流体通道的血管样结构的3D生物打印
ACS Biomater Sci Eng. 2017 Mar 13;3(3):399-408. doi: 10.1021/acsbiomaterials.6b00643. Epub 2017 Feb 9.
2
3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.具有二次交联的剪切变稀透明质酸水凝胶的3D打印
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1743-1751. doi: 10.1021/acsbiomaterials.6b00158. Epub 2016 Jun 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验