Suppr超能文献

通过在随机模型中嵌入时变参数来解释流行病学中的非平稳性。

Accounting for non-stationarity in epidemiology by embedding time-varying parameters in stochastic models.

机构信息

Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS UMR 8197, Paris, France.

International Center for Mathematical and Computational Modeling of Complex Systems (UMMISCO), UMI 209, UPMC/IRD, France.

出版信息

PLoS Comput Biol. 2018 Aug 15;14(8):e1006211. doi: 10.1371/journal.pcbi.1006211. eCollection 2018 Aug.

Abstract

The spread of disease through human populations is complex. The characteristics of disease propagation evolve with time, as a result of a multitude of environmental and anthropic factors, this non-stationarity is a key factor in this huge complexity. In the absence of appropriate external data sources, to correctly describe the disease propagation, we explore a flexible approach, based on stochastic models for the disease dynamics, and on diffusion processes for the parameter dynamics. Using such a diffusion process has the advantage of not requiring a specific mathematical function for the parameter dynamics. Coupled with particle MCMC, this approach allows us to reconstruct the time evolution of some key parameters (average transmission rate for instance). Thus, by capturing the time-varying nature of the different mechanisms involved in disease propagation, the epidemic can be described. Firstly we demonstrate the efficiency of this methodology on a toy model, where the parameters and the observation process are known. Applied then to real datasets, our methodology is able, based solely on simple stochastic models, to reconstruct complex epidemics, such as flu or dengue, over long time periods. Hence we demonstrate that time-varying parameters can improve the accuracy of model performances, and we suggest that our methodology can be used as a first step towards a better understanding of a complex epidemic, in situation where data is limited and/or uncertain.

摘要

疾病在人群中的传播是复杂的。疾病传播的特征随着时间的推移而演变,由于众多环境和人为因素的影响,这种非平稳性是这种巨大复杂性的关键因素。在缺乏适当的外部数据源的情况下,为了正确描述疾病的传播,我们探索了一种灵活的方法,该方法基于疾病动力学的随机模型和参数动力学的扩散过程。使用这种扩散过程的优点是不需要为参数动力学指定特定的数学函数。结合粒子马尔可夫链蒙特卡罗方法(particle MCMC),这种方法允许我们重建一些关键参数(例如平均传播率)的时间演化。因此,通过捕捉疾病传播中涉及的不同机制的时变性质,可以描述流行病。首先,我们在一个已知参数和观测过程的玩具模型上证明了这种方法的效率。然后将其应用于真实数据集,我们的方法仅基于简单的随机模型,就能够重建复杂的流行病,例如流感或登革热,跨越很长的时间段。因此,我们证明了时变参数可以提高模型性能的准确性,并建议我们的方法可以作为在数据有限和/或不确定的情况下,更好地理解复杂流行病的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f89f/6110518/bfd242d8c317/pcbi.1006211.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验