Suppr超能文献

用于生物标志物回归的深度学习:在胸部CT扫描中对骨质疏松症和肺气肿的应用。

Deep learning for biomarker regression: application to osteoporosis and emphysema on chest CT scans.

作者信息

González Germán, Washko George R, Estépar Raúl San José

机构信息

Sierra Research S.L. Avda Costa Blanca 132. Alicante. Spain.

Division of Pulmonary and Critical Care Medicine. Department of Medicine. Brigham and Women's Hospital. 75 Francis St, Boston, MA. USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2018 Feb;10574. doi: 10.1117/12.2293455. Epub 2018 Mar 2.

Abstract

INTRODUCTION

Biomarker computation using deep-learning often relies on a two-step process, where the deep learning algorithm segments the region of interest and then the biomarker is measured. We propose an alternative paradigm, where the biomarker is estimated directly using a regression network. We showcase this image-to-biomarker paradigm using two biomarkers: the estimation of bone mineral density (BMD) and the estimation of lung percentage of emphysema from CT scans.

MATERIALS AND METHODS

We use a large database of 9,925 CT scans to train, validate and test the network for which reference standard BMD and percentage emphysema have been already computed. First, the 3D dataset is reduced to a set of canonical 2D slices where the organ of interest is visible (either spine for BMD or lungs for emphysema). This data reduction is performed using an automatic object detector. Second, The regression neural network is composed of three convolutional layers, followed by a fully connected and an output layer. The network is optimized using a momentum optimizer with an exponential decay rate, using the root mean squared error as cost function.

RESULTS

The Pearson correlation coefficients obtained against the reference standards are = 0.940 ( < 0.00001) and = 0.976 ( < 0.00001) for BMD and percentage emphysema respectively.

CONCLUSIONS

The deep-learning regression architecture can learn biomarkers from images directly, without indicating the structures of interest. This approach simplifies the development of biomarker extraction algorithms. The proposed data reduction based on object detectors conveys enough information to compute the biomarkers of interest.

摘要

引言

使用深度学习进行生物标志物计算通常依赖于两步过程,即深度学习算法先分割感兴趣区域,然后测量生物标志物。我们提出了一种替代范式,即使用回归网络直接估计生物标志物。我们使用两种生物标志物展示这种图像到生物标志物的范式:从CT扫描中估计骨密度(BMD)和肺气肿的肺占比。

材料与方法

我们使用一个包含9925份CT扫描的大型数据库来训练、验证和测试网络,该数据库中已计算出参考标准BMD和肺气肿占比。首先,将3D数据集简化为一组感兴趣器官可见的规范2D切片(对于BMD是脊柱,对于肺气肿是肺)。这种数据简化使用自动目标检测器进行。其次,回归神经网络由三个卷积层组成,随后是一个全连接层和一个输出层。使用带有指数衰减率的动量优化器对网络进行优化,使用均方根误差作为代价函数。

结果

相对于参考标准,BMD和肺气肿占比的皮尔逊相关系数分别为 = 0.940(< 0.00001)和 = 0.976(< 0.00001)。

结论

深度学习回归架构可以直接从图像中学习生物标志物,而无需指明感兴趣的结构。这种方法简化了生物标志物提取算法的开发。所提出的基于目标检测器的数据简化传达了足够的信息来计算感兴趣的生物标志物。

相似文献

引用本文的文献

10
Applications of Machine Learning in Bone and Mineral Research.机器学习在骨矿研究中的应用。
Endocrinol Metab (Seoul). 2021 Oct;36(5):928-937. doi: 10.3803/EnM.2021.1111. Epub 2021 Oct 21.

本文引用的文献

6
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.基于 MRI 图像的卷积神经网络脑肿瘤分割。
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.
9
A CNN Regression Approach for Real-Time 2D/3D Registration.一种用于实时 2D/3D 配准的 CNN 回归方法。
IEEE Trans Med Imaging. 2016 May;35(5):1352-1363. doi: 10.1109/TMI.2016.2521800. Epub 2016 Jan 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验