Suppr超能文献

基于朊病毒的纳米材料及其新兴应用。

Prion-based nanomaterials and their emerging applications.

作者信息

Díaz-Caballero Marta, Fernández Maria Rosario, Navarro Susanna, Ventura Salvador

机构信息

a Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular , Universitat Autonoma de Barcelona , Bellaterra (Barcelona) , Spain.

出版信息

Prion. 2018;12(5-6):266-272. doi: 10.1080/19336896.2018.1521235. Epub 2018 Oct 2.

Abstract

Protein misfolding and aggregation into highly ordered fibrillar structures have been traditionally associated with pathological processes. Nevertheless, nature has taken advantage of the particular properties of amyloids for functional purposes, like in the protection of organisms against environmental changing conditions. Over the last decades, these fibrillar structures have inspired the design of new nanomaterials with intriguing applications in biomedicine and nanotechnology such as tissue engineering, drug delivery, adhesive materials, biodegradable nanocomposites, nanowires or biosensors. Prion and prion-like proteins, which are considered a subclass of amyloids, are becoming ideal candidates for the design of new and tunable nanomaterials. In this review, we discuss the particular properties of this kind of proteins, and the current advances on the design of new materials based on prion sequences.

摘要

蛋白质错误折叠并聚集成高度有序的纤维状结构传统上与病理过程相关。然而,自然界利用了淀粉样蛋白的特殊性质实现功能目的,比如保护生物体免受环境变化条件的影响。在过去几十年里,这些纤维状结构启发了新型纳米材料的设计,在生物医学和纳米技术领域有着引人关注的应用,如组织工程、药物递送、粘合材料、可生物降解的纳米复合材料、纳米线或生物传感器。朊病毒和类朊病毒蛋白被认为是淀粉样蛋白的一个亚类,正成为设计新型可调谐纳米材料的理想候选者。在本综述中,我们讨论了这类蛋白质的特殊性质,以及基于朊病毒序列的新材料设计的当前进展。

相似文献

1
Prion-based nanomaterials and their emerging applications.
Prion. 2018;12(5-6):266-272. doi: 10.1080/19336896.2018.1521235. Epub 2018 Oct 2.
2
Prion domains as a driving force for the assembly of functional nanomaterials.
Prion. 2020 Dec;14(1):170-179. doi: 10.1080/19336896.2020.1785659.
3
The structural line between prion and "prion-like": Insights from prion protein and tau.
Curr Opin Neurobiol. 2024 Jun;86:102857. doi: 10.1016/j.conb.2024.102857. Epub 2024 Mar 15.
4
Amyloids, prions and the inherent infectious nature of misfolded protein aggregates.
Trends Biochem Sci. 2006 Mar;31(3):150-5. doi: 10.1016/j.tibs.2006.01.002. Epub 2006 Feb 13.
5
Minimalist Prion-Inspired Polar Self-Assembling Peptides.
ACS Nano. 2018 Jun 26;12(6):5394-5407. doi: 10.1021/acsnano.8b00417. Epub 2018 Jun 4.
6
Ubiquitous amyloids.
Appl Biochem Biotechnol. 2012 Apr;166(7):1626-43. doi: 10.1007/s12010-012-9549-3. Epub 2012 Feb 19.
7
Prion amyloid structure explains templating: how proteins can be genes.
FEMS Yeast Res. 2010 Dec;10(8):980-91. doi: 10.1111/j.1567-1364.2010.00666.x.
8
Yeast Prions Compared to Functional Prions and Amyloids.
J Mol Biol. 2018 Oct 12;430(20):3707-3719. doi: 10.1016/j.jmb.2018.04.022. Epub 2018 Apr 24.
10
Nanomaterials: amyloids reflect their brighter side.
Nano Rev. 2011;2. doi: 10.3402/nano.v2i0.6032. Epub 2011 May 31.

引用本文的文献

1
Novel Delivery of Cyclic-Diguanylate Monophosphate Utilizing Amyloid Depots.
Pharmaceutics. 2025 May 19;17(5):668. doi: 10.3390/pharmaceutics17050668.
2
Prions: structure, function, evolution, and disease.
Arch Microbiol. 2024 Nov 22;207(1):1. doi: 10.1007/s00203-024-04200-3.
4
An updated overview of some factors that influence the biological effects of nanoparticles.
Front Bioeng Biotechnol. 2023 Aug 30;11:1254861. doi: 10.3389/fbioe.2023.1254861. eCollection 2023.
6
Amyloid Fibrils Formed by Short Prion-Inspired Peptides Are Metalloenzymes.
ACS Nano. 2023 Sep 12;17(17):16968-16979. doi: 10.1021/acsnano.3c04164. Epub 2023 Aug 30.
7
Phenotypic plasticity as a facilitator of microbial evolution.
Environ Epigenet. 2022 Nov 17;8(1):dvac020. doi: 10.1093/eep/dvac020. eCollection 2022.
8
Nucleation of Porous Crystals from Ion-Paired Prenucleation Clusters.
Chem Mater. 2022 Aug 23;34(16):7139-7149. doi: 10.1021/acs.chemmater.2c00418. Epub 2022 Jun 16.
9
Novel, Inexpensive, and Scalable Amyloid Fibril Formation Method.
Materials (Basel). 2022 Feb 26;15(5):1766. doi: 10.3390/ma15051766.
10

本文引用的文献

1
Dityrosine Cross-Linking in Designing Biomaterials.
ACS Biomater Sci Eng. 2016 Dec 12;2(12):2108-2121. doi: 10.1021/acsbiomaterials.6b00454. Epub 2016 Oct 28.
2
Biofunctionalized self-assembly of peptide amphiphile induces the differentiation of bone marrow mesenchymal stem cells into neural cells.
Mol Cell Biochem. 2019 Jan;450(1-2):199-207. doi: 10.1007/s11010-018-3386-9. Epub 2018 Jun 21.
3
Minimalist Prion-Inspired Polar Self-Assembling Peptides.
ACS Nano. 2018 Jun 26;12(6):5394-5407. doi: 10.1021/acsnano.8b00417. Epub 2018 Jun 4.
4
Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation.
Nat Struct Mol Biol. 2018 Apr;25(4):341-346. doi: 10.1038/s41594-018-0050-8. Epub 2018 Apr 2.
5
Self-assembly of bacterial amyloid protein nanomaterials on solid surfaces.
J Colloid Interface Sci. 2018 Jun 15;520:145-154. doi: 10.1016/j.jcis.2018.03.016. Epub 2018 Mar 7.
6
Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks.
Science. 2018 Feb 9;359(6376):698-701. doi: 10.1126/science.aan6398.
7
Phase separation of a yeast prion protein promotes cellular fitness.
Science. 2018 Jan 5;359(6371). doi: 10.1126/science.aao5654.
8
Opposed Effects of Dityrosine Formation in Soluble and Aggregated α-Synuclein on Fibril Growth.
J Mol Biol. 2017 Oct 13;429(20):3018-3030. doi: 10.1016/j.jmb.2017.09.005. Epub 2017 Sep 13.
9
Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
ACS Nano. 2017 Jul 25;11(7):6985-6995. doi: 10.1021/acsnano.7b02298. Epub 2017 Jun 19.
10
Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology.
Chem Soc Rev. 2017 Jul 31;46(15):4661-4708. doi: 10.1039/c6cs00542j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验