Suppr超能文献

4D 生物打印的进展和未来展望。

Advances and Future Perspectives in 4D Bioprinting.

机构信息

Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, CA 90095, USA.

Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Biotechnol J. 2018 Dec;13(12):e1800148. doi: 10.1002/biot.201800148. Epub 2018 Nov 15.

Abstract

Three-dimensionally printed constructs are static and do not recapitulate the dynamic nature of tissues. Four-dimensional (4D) bioprinting has emerged to include conformational changes in printed structures in a predetermined fashion using stimuli-responsive biomaterials and/or cells. The ability to make such dynamic constructs would enable an individual to fabricate tissue structures that can undergo morphological changes. Furthermore, other fields (bioactuation, biorobotics, and biosensing) will benefit from developments in 4D bioprinting. Here, the authors discuss stimuli-responsive biomaterials as potential bioinks for 4D bioprinting. Natural cell forces can also be incorporated into 4D bioprinted structures. The authors introduce mathematical modeling to predict the transition and final state of 4D printed constructs. Different potential applications of 4D bioprinting are also described. Finally, the authors highlight future perspectives for this emerging technology in biomedicine.

摘要

三维打印结构是静态的,不能再现组织的动态特性。为了以预定的方式在打印结构中包含构象变化,出现了四维(4D)生物打印技术,该技术使用对刺激有响应的生物材料和/或细胞。这种制造动态结构的能力将使人们能够制造可以发生形态变化的组织结构。此外,其他领域(生物致动、生物机器人技术和生物传感)将受益于 4D 生物打印技术的发展。在这里,作者讨论了对刺激有响应的生物材料作为 4D 生物打印的潜在生物墨水。还可以将天然细胞力纳入 4D 生物打印结构中。作者引入了数学建模来预测 4D 打印结构的转变和最终状态。还描述了 4D 生物打印的不同潜在应用。最后,作者强调了这项新兴生物技术在生物医学中的未来展望。

相似文献

1
Advances and Future Perspectives in 4D Bioprinting.
Biotechnol J. 2018 Dec;13(12):e1800148. doi: 10.1002/biot.201800148. Epub 2018 Nov 15.
2
Smart biomaterials: From 3D printing to 4D bioprinting.
Methods. 2022 Sep;205:191-199. doi: 10.1016/j.ymeth.2022.07.006. Epub 2022 Jul 8.
3
Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.
Acta Biomater. 2020 Jan 1;101:26-42. doi: 10.1016/j.actbio.2019.10.038. Epub 2019 Oct 28.
4
Translational biomaterials of four-dimensional bioprinting for tissue regeneration.
Biofabrication. 2023 Oct 9;16(1):012001. doi: 10.1088/1758-5090/acfdd0.
5
4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.
Biofabrication. 2016 Dec 2;9(1):012001. doi: 10.1088/1758-5090/9/1/012001.
7
Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics.
Small. 2022 Sep;18(36):e2106824. doi: 10.1002/smll.202106824. Epub 2022 Jan 20.
8
4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector.
J Med Chem. 2020 Aug 13;63(15):8003-8024. doi: 10.1021/acs.jmedchem.9b02115. Epub 2020 Apr 17.
9
Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting.
Crit Rev Biotechnol. 2024 Aug;44(5):860-891. doi: 10.1080/07388551.2023.2213398. Epub 2023 Jul 13.
10
A voyage from 3D to 4D printing in nanomedicine and healthcare: part I.
Nanomedicine (Lond). 2022 Feb;17(4):237-253. doi: 10.2217/nnm-2021-0285. Epub 2022 Feb 3.

引用本文的文献

1
Exploring 4D printing of smart materials for regenerative medicine applications.
RSC Adv. 2025 Sep 5;15(39):32155-32171. doi: 10.1039/d5ra04410c.
2
New Frontiers in 3D Printing Using Biocompatible Polymers.
Int J Mol Sci. 2025 Aug 19;26(16):8016. doi: 10.3390/ijms26168016.
3
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration.
Nanomaterials (Basel). 2025 Aug 5;15(15):1198. doi: 10.3390/nano15151198.
4
Acoustic Bioprinting: A Glimpse Into an Emerging Field.
Small Methods. 2025 Jul 26:e2500733. doi: 10.1002/smtd.202500733.
5
Engineering principles of zwitterionic hydrogels: Molecular architecture to manufacturing innovations for advanced healthcare materials.
Mater Today Bio. 2025 Jul 12;33:102085. doi: 10.1016/j.mtbio.2025.102085. eCollection 2025 Aug.
7
Stimuli-responsive hybrid materials for 4D tissue models.
Mater Today Bio. 2025 Jul 2;33:102035. doi: 10.1016/j.mtbio.2025.102035. eCollection 2025 Aug.
8
4D fabrication of shape-changing systems for tissue engineering: state of the art and perspectives.
Prog Addit Manuf. 2025;10(4):1913-1943. doi: 10.1007/s40964-024-00743-5. Epub 2024 Aug 12.
10
The Promise and Challenges of Bioprinting in Tissue Engineering.
Micromachines (Basel). 2024 Dec 23;15(12):1529. doi: 10.3390/mi15121529.

本文引用的文献

1
Bioprinting-Based PDLSC-ECM Screening for in Vivo Repair of Alveolar Bone Defect Using Cell-Laden, Injectable and Photocrosslinkable Hydrogels.
ACS Biomater Sci Eng. 2017 Dec 11;3(12):3534-3545. doi: 10.1021/acsbiomaterials.7b00601. Epub 2017 Oct 26.
3
Smart scaffolds in tissue regeneration.
Regen Biomater. 2018 Jun;5(3):125-128. doi: 10.1093/rb/rby007. Epub 2018 Apr 17.
4
Microfluidics-Enabled Multimaterial Maskless Stereolithographic Bioprinting.
Adv Mater. 2018 Jul;30(27):e1800242. doi: 10.1002/adma.201800242. Epub 2018 May 7.
5
Enabling personalized implant and controllable biosystem development through 3D printing.
Biotechnol Adv. 2018 Mar-Apr;36(2):521-533. doi: 10.1016/j.biotechadv.2018.02.004. Epub 2018 Feb 9.
6
Micro 3D Printing of a Temperature-Responsive Hydrogel Using Projection Micro-Stereolithography.
Sci Rep. 2018 Jan 31;8(1):1963. doi: 10.1038/s41598-018-20385-2.
7
In-Gel Direct Laser Writing for 3D-Designed Hydrogel Composites That Undergo Complex Self-Shaping.
Adv Sci (Weinh). 2017 Jul 25;5(1):1700038. doi: 10.1002/advs.201700038. eCollection 2018 Jan.
8
Electrically Driven Microengineered Bioinspired Soft Robots.
Adv Mater. 2018 Mar;30(10). doi: 10.1002/adma.201704189. Epub 2018 Jan 11.
9
Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks.
J Biomed Mater Res A. 2018 Apr;106(4):865-875. doi: 10.1002/jbm.a.36323. Epub 2018 Jan 23.
10
Nanoengineered thermoresponsive magnetic hydrogels for biomedical applications.
Bioeng Transl Med. 2016 Oct 17;1(3):297-305. doi: 10.1002/btm2.10034. eCollection 2016 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验