Suppr超能文献

迈向对细胞身份的定量理解。

Towards a Quantitative Understanding of Cell Identity.

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Trends Cell Biol. 2018 Dec;28(12):1030-1048. doi: 10.1016/j.tcb.2018.09.002. Epub 2018 Oct 8.

Abstract

Cells have traditionally been characterized using expression levels of a few proteins that are thought to specify phenotype. This requires a priori selection of proteins, which can introduce descriptor bias, and neglects the wealth of additional molecular information nested within each cell in a population, which often makes these sparse descriptors qualitative. Recently, more unbiased and quantitative cell characterization has been made possible by new high-throughput, information-dense experimental approaches and data-driven computational methods. This review discusses such quantitative descriptors in the context of three central concepts of cell identity: definition, creation, and stability. Collectively, these concepts are essential for constructing quantitative phenotypic landscapes, which will enhance our understanding of cell biology and facilitate cell engineering for research and clinical applications.

摘要

细胞传统上是通过一些被认为能指定表型的蛋白质的表达水平来表征的。这需要对蛋白质进行先验选择,这可能会引入描述符偏差,并且忽略了群体中每个细胞内嵌套的大量其他分子信息,而这些信息通常使这些稀疏的描述符具有定性。最近,通过新的高通量、信息密集型实验方法和数据驱动的计算方法,实现了更无偏和定量的细胞表征。这篇综述讨论了这些定量描述符在细胞身份的三个核心概念的背景下:定义、创建和稳定性。总的来说,这些概念对于构建定量表型景观是必不可少的,这将增强我们对细胞生物学的理解,并为研究和临床应用促进细胞工程。

相似文献

1
Towards a Quantitative Understanding of Cell Identity.迈向对细胞身份的定量理解。
Trends Cell Biol. 2018 Dec;28(12):1030-1048. doi: 10.1016/j.tcb.2018.09.002. Epub 2018 Oct 8.
10
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

3
Decoding Human Biology and Disease Using Single-cell Omics Technologies.使用单细胞组学技术解码人类生物学与疾病
Genomics Proteomics Bioinformatics. 2023 Oct;21(5):926-949. doi: 10.1016/j.gpb.2023.06.003. Epub 2023 Sep 20.
5
Complex computation from developmental priors.基于发育先验的复杂计算。
Nat Commun. 2023 Apr 19;14(1):2226. doi: 10.1038/s41467-023-37980-1.
8
Learning cell identity in immunology, neuroscience, and cancer.学习免疫学、神经科学和癌症中的细胞身份。
Semin Immunopathol. 2023 Jan;45(1):3-16. doi: 10.1007/s00281-022-00976-y. Epub 2022 Dec 19.

本文引用的文献

1
A comparison of single-cell trajectory inference methods.单细胞轨迹推断方法比较。
Nat Biotechnol. 2019 May;37(5):547-554. doi: 10.1038/s41587-019-0071-9. Epub 2019 Apr 1.
9
Reversed graph embedding resolves complex single-cell trajectories.反向图嵌入解析复杂的单细胞轨迹。
Nat Methods. 2017 Oct;14(10):979-982. doi: 10.1038/nmeth.4402. Epub 2017 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验