Suppr超能文献

基于自适应增强的人类微生物-疾病关联预测

Human Microbe-Disease Association Prediction Based on Adaptive Boosting.

作者信息

Peng Li-Hong, Yin Jun, Zhou Liqian, Liu Ming-Xi, Zhao Yan

机构信息

School of Computer Science, Hunan University of Technology, Zhuzhou, China.

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.

出版信息

Front Microbiol. 2018 Oct 9;9:2440. doi: 10.3389/fmicb.2018.02440. eCollection 2018.

Abstract

There are countless microbes in the human body, and they play various roles in the physiological process. There is growing evidence that microbes are closely associated with human diseases. Researching disease-related microbes helps us understand the mechanisms of diseases and provides new strategies for diseases diagnosis and treatment. Many computational models have been proposed to predict disease-related microbes, in this paper, we developed a model of Adaptive Boosting for Human Microbe-Disease Association prediction (ABHMDA) to reveal the associations between diseases and microbes by calculating the relation probability of disease-microbe pair using a strong classifier. Our model could be applied to new diseases without any known related microbes. In order to assess the prediction power of the model, global and local leave-one-out cross validation (LOOCV) were implemented. As shown in the results, the global and local LOOCV values reached 0.8869 and 0.7910, respectively. What's more, 10, 10, and 8 out of the top 10 microbes predicted to be most likely to be associated with Asthma, Colorectal carcinoma and Type 1 diabetes were all verified by relevant literatures or database HMDAD, respectively. The above results verify the superior predictive performance of ABHMDA.

摘要

人体中有无数的微生物,它们在生理过程中发挥着各种作用。越来越多的证据表明,微生物与人类疾病密切相关。研究与疾病相关的微生物有助于我们了解疾病的发病机制,并为疾病的诊断和治疗提供新的策略。已经提出了许多计算模型来预测与疾病相关的微生物,在本文中,我们开发了一种用于人类微生物-疾病关联预测的自适应增强模型(ABHMDA),通过使用强分类器计算疾病-微生物对的关联概率来揭示疾病与微生物之间的关联。我们的模型可以应用于没有任何已知相关微生物的新疾病。为了评估模型的预测能力,我们实施了全局和局部留一法交叉验证(LOOCV)。结果表明,全局和局部LOOCV值分别达到0.8869和0.7910。此外,预测最有可能与哮喘、结肠直肠癌和1型糖尿病相关的前10种微生物中,分别有10种、10种和8种被相关文献或数据库HMDAD证实。上述结果验证了ABHMDA卓越的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6308/6189371/15cf823e58ca/fmicb-09-02440-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验