Pengwang Eakkachai, Rabenorosoa Kanty, Rakotondrabe Micky, Andreff Nicolas
Automatic Control and Micro-Mechatronic Systems Department (AS2M), FEMTO-ST Institute, UMR CNRS 6174-UFC/ENSMM/UTBM, Besancon 25000, France.
Institute of Field Robotics, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand.
Micromachines (Basel). 2016 Feb 6;7(2):24. doi: 10.3390/mi7020024.
This topical review discusses recent development and trends on scanning micromirrors for biomedical applications. This also includes a biomedical micro robot for precise manipulations in a limited volume. The characteristics of medical scanning micromirror are explained in general with the fundamental of microelectromechanical systems (MEMS) for fabrication processes. Along with the explanations of mechanism and design, the principle of actuation are provided for general readers. In this review, several testing methodology and examples are described based on many types of actuators, such as, electrothermal actuators, electrostatic actuators, electromagnetic actuators, pneumatic actuators, and shape memory alloy. Moreover, this review provides description of the key fabrication processes and common materials in order to be a basic guideline for selecting micro-actuators. With recent developments on scanning micromirrors, performances of biomedical application are enhanced for higher resolution, high accuracy, and high dexterity. With further developments on integrations and control schemes, MEMS-based scanning micromirrors would be able to achieve a better performance for medical applications due to small size, ease in microfabrication, mass production, high scanning speed, low power consumption, mechanical stable, and integration compatibility.
本专题综述讨论了用于生物医学应用的扫描微镜的最新进展和趋势。这还包括一种用于在有限空间内进行精确操作的生物医学微型机器人。医学扫描微镜的特性一般结合微机电系统(MEMS)制造工艺的基本原理进行解释。除了对其机理和设计进行解释外,还为普通读者提供了驱动原理。在本综述中,基于多种类型的致动器,如电热致动器、静电致动器、电磁致动器、气动致动器和形状记忆合金,描述了几种测试方法和示例。此外,本综述还介绍了关键制造工艺和常用材料,以便作为选择微致动器的基本指南。随着扫描微镜的最新发展,生物医学应用的性能在更高分辨率、高精度和高灵活性方面得到了提升。随着集成和控制方案的进一步发展,基于MEMS的扫描微镜由于尺寸小、易于微加工、可大规模生产、扫描速度高、功耗低、机械稳定性好以及集成兼容性强,将能够在医疗应用中实现更好的性能。