Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France.
Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Donders Centre for Neuroscience, Department of Neurophysiology, Radboud University, Nijmegen, the Netherlands.
Curr Biol. 2018 Dec 3;28(23):3723-3735.e6. doi: 10.1016/j.cub.2018.10.017. Epub 2018 Nov 15.
The vestibular apparatus provides animals with postural and movement-related information that is essential to adequately execute numerous sensorimotor tasks. In order to activate this sensory system in a physiological manner, one needs to macroscopically rotate or translate the animal's head, which in turn renders simultaneous neural recordings highly challenging. Here we report on a novel miniaturized, light-sheet microscope that can be dynamically co-rotated with a head-restrained zebrafish larva, enabling controlled vestibular stimulation. The mechanical rigidity of the microscope allows one to perform whole-brain functional imaging with state-of-the-art resolution and signal-to-noise ratio while imposing up to 25° in angular position and 6,000°/s in rotational acceleration. We illustrate the potential of this novel setup by producing the first whole-brain response maps to sinusoidal and stepwise vestibular stimulation. The responsive population spans multiple brain areas and displays bilateral symmetry, and its organization is highly stereotypic across individuals. Using Fourier and regression analysis, we identified three major functional clusters that exhibit well-defined phasic and tonic response patterns to vestibular stimulation. Our rotatable light-sheet microscope provides a unique tool for systematically studying vestibular processing in the vertebrate brain and extends the potential of virtual-reality systems to explore complex multisensory and motor integration during simulated 3D navigation.
前庭器官为动物提供姿势和运动相关的信息,这对充分执行众多感觉运动任务至关重要。为了以生理方式激活这个感觉系统,需要宏观上旋转或平移动物的头部,这反过来又使得同时进行神经记录极具挑战性。在这里,我们报告了一种新型的微型化、光片显微镜,它可以与头部固定的斑马鱼幼虫动态共旋转,从而实现可控的前庭刺激。显微镜的机械刚性允许在施加高达 25°的角度位置和 6,000°/s 的旋转加速度的情况下,以最先进的分辨率和信噪比进行全脑功能成像。我们通过产生对正弦和逐步前庭刺激的第一个全脑响应图来说明这个新型设置的潜力。响应的群体跨越多个脑区,并显示出双侧对称性,其组织在个体之间高度刻板。使用傅里叶和回归分析,我们确定了三个主要的功能簇,它们对前庭刺激表现出明确的相位和紧张反应模式。我们的可旋转光片显微镜为系统地研究脊椎动物大脑中的前庭处理提供了一个独特的工具,并扩展了虚拟现实系统的潜力,以探索模拟 3D 导航过程中的复杂多感觉和运动整合。