Suppr超能文献

使用波前校正多层聚焦镜对X射线自由电子激光进行纳米聚焦

Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors.

作者信息

Matsuyama S, Inoue T, Yamada J, Kim J, Yumoto H, Inubushi Y, Osaka T, Inoue I, Koyama T, Tono K, Ohashi H, Yabashi M, Ishikawa T, Yamauchi K

机构信息

Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.

Pohang Accelerator Laboratory, Pohang, Gyeongbuk, 37673, Republic of Korea.

出版信息

Sci Rep. 2018 Nov 28;8(1):17440. doi: 10.1038/s41598-018-35611-0.

Abstract

A method of fabricating multilayer focusing mirrors that can focus X-rays down to 10 nm or less was established in this study. The wavefront aberration induced by multilayer Kirkpatrick-Baez mirror optics was measured using a single grating interferometer at a photon energy of 9.1 keV at SPring-8 Angstrom Compact Free Electron Laser (SACLA), and the mirror shape was then directly corrected by employing a differential deposition method. The accuracies of these processes were carefully investigated, considering the accuracy required for diffraction-limited focusing. The wavefront produced by the corrected multilayer focusing mirrors was characterized again in the same manner, revealing that the root mean square of the wavefront aberration was improved from 2.7 (3.3) rad to 0.52 (0.82) rad in the vertical (horizontal) direction. A wave-optical simulator indicated that these wavefront-corrected multilayer focusing mirrors are capable of achieving sub-10-nm X-ray focusing.

摘要

本研究建立了一种制造多层聚焦镜的方法,该聚焦镜可将X射线聚焦至10纳米或更小。在SPring-8埃紧凑型自由电子激光装置(SACLA)上,使用单光栅干涉仪在9.1千电子伏特的光子能量下测量了多层柯克帕特里克-贝兹镜光学系统引起的波前像差,然后采用差分沉积法直接校正镜面形状。考虑到衍射极限聚焦所需的精度,对这些过程的精度进行了仔细研究。以相同方式再次表征了经校正的多层聚焦镜产生的波前,结果表明,波前像差的均方根在垂直(水平)方向上从2.7(3.3)弧度提高到了0.52(0.82)弧度。一个波光学模拟器表明,这些波前校正后的多层聚焦镜能够实现亚10纳米的X射线聚焦。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/732f/6262013/5c7bf58e2acc/41598_2018_35611_Fig1_HTML.jpg

相似文献

1
Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors.
Sci Rep. 2018 Nov 28;8(1):17440. doi: 10.1038/s41598-018-35611-0.
3
Single-nanometer focusing of hard x-rays by Kirkpatrick-Baez mirrors.
J Phys Condens Matter. 2011 Oct 5;23(39):394206. doi: 10.1088/0953-8984/23/39/394206. Epub 2011 Sep 15.
4
Systematic-error-free wavefront measurement using an X-ray single-grating interferometer.
Rev Sci Instrum. 2018 Apr;89(4):043106. doi: 10.1063/1.5026440.
5
Sub-micrometre focusing of intense 100 keV X-rays with multilayer reflective optics.
J Synchrotron Radiat. 2024 Mar 1;31(Pt 2):276-281. doi: 10.1107/S1600577524000213. Epub 2024 Feb 22.
7
Achromatic nested Kirkpatrick-Baez mirror optics for hard X-ray nanofocusing.
J Synchrotron Radiat. 2011 Jul;18(Pt 4):575-9. doi: 10.1107/S0909049511010995. Epub 2011 May 12.
8
Stitching interferometry for ellipsoidal x-ray mirrors.
Rev Sci Instrum. 2016 May;87(5):051905. doi: 10.1063/1.4950714.
9
Nanofocusing of X-ray free-electron lasers by grazing-incidence reflective optics.
J Synchrotron Radiat. 2015 May;22(3):592-8. doi: 10.1107/S1600577515005093. Epub 2015 Apr 15.
10
Generation of an X-ray nanobeam of a free-electron laser using reflective optics with speckle interferometry.
J Synchrotron Radiat. 2020 Jul 1;27(Pt 4):883-889. doi: 10.1107/S1600577520006980.

引用本文的文献

1
Modeling electron dynamics in silicon driven by high-intensity femtosecond x-rays.
Struct Dyn. 2025 Aug 1;12(4):044101. doi: 10.1063/4.0000299. eCollection 2025 Jul.
2
Development of portable nanofocusing optics for X-ray free-electron laser pulses.
J Synchrotron Radiat. 2025 May 1;32(Pt 3):534-538. doi: 10.1107/S1600577525002279. Epub 2025 Apr 9.
3
Resolution enhancement on single-shot X-ray spectrometers using a detuned non-dispersive multi-crystal analyzer.
J Synchrotron Radiat. 2025 Mar 1;32(Pt 2):288-293. doi: 10.1107/S1600577525000505. Epub 2025 Feb 17.
4
Development of the Nanobeam X-ray Experiments instrument at PAL-XFEL.
J Synchrotron Radiat. 2025 Mar 1;32(Pt 2):466-473. doi: 10.1107/S1600577525000426. Epub 2025 Feb 12.
5
Engineering Supramolecular Hybrid Architectures with Directional Organofluorine Bonds.
Small Sci. 2024 Jan;4(1). doi: 10.1002/smsc.202300110. Epub 2023 Dec 13.
6
Multi-frame blind deconvolution using X-ray microscope images of an in-plane rotating sample.
Sci Rep. 2024 Nov 29;14(1):29726. doi: 10.1038/s41598-024-79237-x.
7
Development of MHz X-ray phase contrast imaging at the European XFEL.
J Synchrotron Radiat. 2025 Jan 1;32(Pt 1):17-28. doi: 10.1107/S160057752400986X.
8
An active piezoelectric plane X-ray focusing mirror with a linearly changing thickness.
J Synchrotron Radiat. 2024 Jan 1;31(Pt 1):10-16. doi: 10.1107/S1600577523009566.
9
Alvarez varifocal X-ray lens.
Nat Commun. 2023 Jul 31;14(1):4582. doi: 10.1038/s41467-023-40347-1.
10
X-ray mirrors with sub-nanometre figure errors obtained by differential deposition of thin WSi films.
J Synchrotron Radiat. 2023 Jul 1;30(Pt 4):708-716. doi: 10.1107/S1600577523003697. Epub 2023 May 30.

本文引用的文献

1
Systematic-error-free wavefront measurement using an X-ray single-grating interferometer.
Rev Sci Instrum. 2018 Apr;89(4):043106. doi: 10.1063/1.5026440.
2
Ellipsoidal mirror for two-dimensional 100-nm focusing in hard X-ray region.
Sci Rep. 2017 Nov 27;7(1):16408. doi: 10.1038/s41598-017-16468-1.
3
Polymer X-ray refractive nano-lenses fabricated by additive technology.
Opt Express. 2017 Jun 26;25(13):14173-14181. doi: 10.1364/OE.25.014173.
4
Hard x-ray scanning imaging achieved with bonded multilayer Laue lenses.
Opt Express. 2017 Apr 17;25(8):8698-8704. doi: 10.1364/OE.25.008698.
5
Perfect X-ray focusing via fitting corrective glasses to aberrated optics.
Nat Commun. 2017 Mar 1;8:14623. doi: 10.1038/ncomms14623.
6
Single-crystal diamond refractive lens for focusing X-rays in two dimensions.
J Synchrotron Radiat. 2016 Jan;23(1):163-8. doi: 10.1107/S1600577515020639. Epub 2016 Jan 1.
7
Speckle based X-ray wavefront sensing with nanoradian angular sensitivity.
Opt Express. 2015 Sep 7;23(18):23310-7. doi: 10.1364/OE.23.023310.
8
Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser.
Nature. 2015 Aug 27;524(7566):446-9. doi: 10.1038/nature14894.
9
Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens.
Opt Express. 2015 May 18;23(10):12496-507. doi: 10.1364/OE.23.012496.
10
Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis.
J Synchrotron Radiat. 2015 May;22(3):599-605. doi: 10.1107/S1600577515004361. Epub 2015 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验