Amoroso Nicola, La Rocca Marianna, Bruno Stefania, Maggipinto Tommaso, Monaco Alfonso, Bellotti Roberto, Tangaro Sabina
Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy.
Dipartimento Interateneo di Fisica "M. Merlin", Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy.
Front Aging Neurosci. 2018 Nov 14;10:365. doi: 10.3389/fnagi.2018.00365. eCollection 2018.
Analysis and quantification of brain structural changes, using Magnetic Resonance Imaging (MRI), are increasingly used to define novel biomarkers of brain pathologies, such as Alzheimer's disease (AD). Several studies have suggested that brain topological organization can reveal early signs of AD. Here, we propose a novel brain model which captures both intra- and inter-subject information within a multiplex network approach. This model localizes brain atrophy effects and summarizes them with a diagnostic score. On an independent test set, our multiplex-based score segregates (i) normal controls (NC) from AD patients with a 0.86±0.01 accuracy and (ii) NC from mild cognitive impairment (MCI) subjects that will convert to AD (cMCI) with an accuracy of 0.84±0.01. The model shows that illness effects are maximally detected by parceling the brain in equal volumes of 3, 000 mm ("patches"), without any segmentation based on anatomical features. The multiplex approach shows great sensitivity in detecting anomalous changes in the brain; the robustness of the obtained results is assessed using both voxel-based morphometry and FreeSurfer morphological features. Because of its generality this method can provide a reliable tool for clinical trials and a disease signature of many neurodegenerative pathologies.
利用磁共振成像(MRI)对脑结构变化进行分析和量化,越来越多地被用于定义脑部疾病(如阿尔茨海默病(AD))的新型生物标志物。多项研究表明,脑拓扑组织能够揭示AD的早期迹象。在此,我们提出一种新型脑模型,该模型在多重网络方法中捕捉个体内和个体间信息。此模型定位脑萎缩效应并用诊断分数对其进行总结。在一个独立测试集上,我们基于多重模型的分数能够以0.86±0.01的准确率区分(i)正常对照(NC)与AD患者,以及以0.84±0.01的准确率区分(ii)NC与将转化为AD的轻度认知障碍(MCI)受试者(cMCI)。该模型表明,通过将脑划分为体积均为3000立方毫米的“小块”(“patch”)来最大程度地检测疾病效应,而无需基于解剖特征进行任何分割。多重方法在检测脑部异常变化方面显示出很高的灵敏度;使用基于体素的形态测量法和FreeSurfer形态学特征对所得结果的稳健性进行了评估。由于其通用性,该方法可为临床试验提供可靠工具,并为许多神经退行性疾病提供疾病特征。