Suppr超能文献

基于年轻成年男性在炎热环境中不同运动和着装条件下的皮肤温度、热通量和心率预测核心体温

Prediction of Core Body Temperature Based on Skin Temperature, Heat Flux, and Heart Rate Under Different Exercise and Clothing Conditions in the Heat in Young Adult Males.

作者信息

Eggenberger Patrick, MacRae Braid A, Kemp Shelley, Bürgisser Michael, Rossi René M, Annaheim Simon

机构信息

Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.

Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

出版信息

Front Physiol. 2018 Dec 10;9:1780. doi: 10.3389/fphys.2018.01780. eCollection 2018.

Abstract

Non-invasive, multi-parameter methods to estimate core body temperature offer several advantages for monitoring thermal strain, although further work is required to identify the most relevant predictor measures. This study aimed to compare the validity of an existing and two novel multi-parameter rectal temperature prediction models. Thirteen healthy male participants (age 30.9 ± 5.4 years) performed two experimental sessions. The experimental procedure comprised 15 min baseline seated rest (23.2 ± 0.3°C, 24.5 ± 1.6% relative humidity), followed by 15 min seated rest and cycling in a climatic chamber (35.4 ± 0.2°C, 56.5 ± 3.9% relative humidity; to +1.5°C or maximally 38.5°C rectal temperature, duration 20-60 min), with a final 30 min seated rest outside the chamber. In session 1, participants exercised at 75% of their heart rate maximum (HR max) and wore light athletic clothing (t-shirt and shorts), while in session 2, participants exercised at 50% HR max, wearing protective firefighter clothing (jacket and trousers). The first new prediction model, comprising the input of 18 non-invasive measures, i.e., insulated and non-insulated skin temperature, heat flux, and heart rate ("Max-Input Model", standard error of the estimate [SEE] = 0.28°C, = 0.70), did not exceed the predictive power of a previously reported model which included six measures and no insulated skin temperatures (SEE = 0.28°C, = 0.71). Moreover, a second new prediction model that contained only the two most relevant parameters (heart rate and insulated skin temperature at the scapula) performed similarly ("Min-Input Model", SEE = 0.29, = 0.68). In conclusion, the "Min-Input Model" provided comparable validity and superior practicality (only two measurement parameters) for estimating rectal temperature versus two other models requiring six or more input measures.

摘要

用于估计核心体温的非侵入性多参数方法在监测热应激方面具有诸多优势,不过仍需进一步研究以确定最相关的预测指标。本研究旨在比较一种现有多参数直肠温度预测模型以及两种新型多参数直肠温度预测模型的有效性。13名健康男性参与者(年龄30.9 ± 5.4岁)进行了两次实验。实验过程包括15分钟的基线坐姿休息(23.2 ± 0.3°C,相对湿度24.5 ± 1.6%),随后在气候舱内进行15分钟的坐姿休息和骑行(35.4 ± 0.2°C,相对湿度56.5 ± 3.9%;直肠温度升至 +1.5°C或最高38.5°C,持续20 - 60分钟),最后在舱外进行30分钟的坐姿休息。在实验1中,参与者以其最大心率(HR max)的75%进行运动,并穿着轻便运动服装(T恤和短裤),而在实验2中,参与者以HR max的50%进行运动,穿着防护性消防员服装(夹克和裤子)。第一个新预测模型包含18项非侵入性测量指标的输入,即隔热和非隔热皮肤温度、热通量以及心率(“最大输入模型”,估计标准误差[SEE] = 0.28°C, = 0.70),其预测能力未超过先前报道的包含六项测量指标且无隔热皮肤温度的模型(SEE = 0.28°C, = 0.71)。此外,仅包含两个最相关参数(心率和肩胛处隔热皮肤温度)的第二个新预测模型表现类似(“最小输入模型”,SEE = 0.29, = 0.68)。总之,与另外两个需要六项或更多输入指标的模型相比,“最小输入模型”在估计直肠温度方面具有相当的有效性和更高的实用性(仅两个测量参数)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8df5/6295644/e88ec438833d/fphys-09-01780-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验