Wang Ye, Slassi Amine, Stoeckel Marc-Antoine, Bertolazzi Simone, Cornil Jerôme, Beljonne David, Samorì Paolo
University of Strasbourg, CNRS, ISIS UMR 7006 , 8 allée Gaspard Monge , F-67000 Strasbourg , France.
Laboratory for Chemistry of Novel Materials , Université de Mons , Place du Parc 20 , 7000 Mons , Belgium.
J Phys Chem Lett. 2019 Feb 7;10(3):540-547. doi: 10.1021/acs.jpclett.8b03697. Epub 2019 Jan 23.
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) recently emerged as novel materials displaying a wide variety of physicochemical properties that render them unique scaffolds for high-performance (opto)electronics. The controlled physisorption of molecules on the TMD surface is a viable approach for tuning their optical and electronic properties. Solvents, made of small aromatic molecules, are frequently employed for the cleaning of the 2D materials or as a "dispersant" for their chemical functionalization with larger (macro)molecules, without considering their potential key effect in locally modifying the characteristics of 2D materials. In this work, we demonstrate how the electronic and optical properties of a mechanically exfoliated monolayer of MoS and WSe are modified when physically interacting with small aromatic molecules of common solvents. Low-temperature photoluminescence (PL) spectra recorded at 78 K revealed that physisorbed benzene derivatives could modulate the charge carrier density in monolayer TMDs, hence affecting the switching between a neutral exciton and trion (charged exciton). By combining experimental evidence with density functional theory calculations, we confirm that charge-transfer doping on TMDs depends not only on the difference in chemical potential between molecules and 2D materials but also on the thermodynamic stability of physisorption. Our results provide unambiguous evidences of the great potential of optical and electrical tuning of monolayer MoS and WSe by physisorption of small aromatic solvent molecules, which is highly relevant for both fundamental studies and device application purposes.
二维(2D)过渡金属二硫属化物(TMDs)最近作为新型材料出现,展现出各种各样的物理化学性质,使其成为用于高性能(光)电子学的独特支架。分子在TMD表面的可控物理吸附是调节其光学和电子性质的一种可行方法。由小芳香分子构成的溶剂经常用于二维材料的清洁,或用作它们与较大(宏观)分子进行化学功能化的“分散剂”,而没有考虑它们在局部改变二维材料特性方面的潜在关键作用。在这项工作中,我们展示了机械剥离的单层MoS和WSe与常见溶剂的小芳香分子发生物理相互作用时,其电子和光学性质是如何被改变的。在78 K下记录的低温光致发光(PL)光谱表明,物理吸附的苯衍生物可以调节单层TMDs中的电荷载流子密度,从而影响中性激子和三重子(带电激子)之间的转换。通过将实验证据与密度泛函理论计算相结合,我们证实TMDs上的电荷转移掺杂不仅取决于分子与二维材料之间的化学势差,还取决于物理吸附的热力学稳定性。我们的结果明确证明了通过小芳香溶剂分子的物理吸附对单层MoS和WSe进行光学和电学调谐具有巨大潜力,这对于基础研究和器件应用目的都高度相关。