Department of Chemical Engineering and Materials Science , University of Minnesota-Twin Cities , 421 Washington Avenue Southeast, 356 Amundson Hall , Minneapolis , Minnesota 55455 , United States.
ACS Comb Sci. 2019 Apr 8;21(4):323-335. doi: 10.1021/acscombsci.8b00182. Epub 2019 Feb 18.
Evolving specific molecular recognition function of proteins requires strategic navigation of a complex mutational landscape. Protein scaffolds aid evolution via a conserved platform on which a modular paratope can be evolved to alter binding specificity. Although numerous protein scaffolds have been discovered, the underlying properties that permit binding evolution remain unknown. We present an algorithm to predict a protein scaffold's ability to evolve novel binding function based upon computationally calculated biophysical parameters. The ability of 17 small proteins to evolve binding functionality across seven discovery campaigns was determined via magnetic activated cell sorting of 10 yeast-displayed protein variants. Twenty topological and biophysical properties were calculated for 787 small protein scaffolds and reduced into independent components. Regularization deduced which extracted features best predicted binding functionality, providing a 4/6 true positive rate, a 9/11 negative predictive value, and a 4/6 positive predictive value. Model analysis suggests a large, disconnected paratope will permit evolved binding function. Previous protein engineering endeavors have suggested that starting with a highly developable (high producibility, stability, solubility) protein will offer greater mutational tolerance. Our results support this connection between developability and evolvability by demonstrating a relationship between protein production in the soluble fraction of Escherichia coli and the ability to evolve binding function upon mutation. We further explain the necessity for initial developability by observing a decrease in proteolytic stability of protein mutants that possess binding functionality over nonfunctional mutants. Future iterations of protein scaffold discovery and evolution will benefit from a combination of computational prediction and knowledge of initial developability properties.
蛋白质特定分子识别功能的进化需要在复杂的突变景观中进行策略性导航。蛋白质支架通过保守平台辅助进化,在该平台上可以进化模块化的抗原决定簇以改变结合特异性。尽管已经发现了许多蛋白质支架,但允许结合进化的基本特性仍然未知。我们提出了一种基于计算生物物理参数预测蛋白质支架进化新结合功能能力的算法。通过对 10 个酵母展示的蛋白质变体进行磁激活细胞分选,确定了 17 个小蛋白质在七个发现活动中进化结合功能的能力。为 787 个小蛋白质支架计算了 20 个拓扑和生物物理特性,并将其简化为独立成分。正则化推断出哪些提取的特征可以最好地预测结合功能,提供了 4/6 的真阳性率、9/11 的阴性预测值和 4/6 的阳性预测值。模型分析表明,大的、不连续的抗原决定簇将允许进化的结合功能。以前的蛋白质工程研究表明,从高度可开发(高产量、稳定性、溶解性)的蛋白质开始将提供更大的突变容忍度。我们的结果通过证明大肠杆菌可溶性部分中蛋白质产生与突变后结合功能进化能力之间的关系,支持了可开发性和可进化性之间的这种联系。我们通过观察具有结合功能的蛋白质突变体的蛋白水解稳定性相对于非功能突变体的降低,进一步解释了初始可开发性的必要性。未来的蛋白质支架发现和进化迭代将受益于计算预测和初始可开发性特性知识的结合。