Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR S1134, DSIMB, Laboratoire d'Excellence GR-Ex, Paris, 75739, France.
Sci Rep. 2019 Jan 30;9(1):998. doi: 10.1038/s41598-018-37367-z.
Glucose plays a crucial role in the mammalian cell metabolism. In the erythrocytes and endothelial cells of the blood-brain barrier, glucose uptake is mediated by the glucose transporter type 1 (GluT1). GluT1 deficiency or mutations cause severe physiological disorders. GluT1 is also an important target in cancer therapy as it is overexpressed in tumor cells. Previous studies have suggested that GluT1 mediates solute transfer through a cycle of conformational changes. However, the corresponding 3D structures adopted by the transporter during the transfer process remain elusive. In the present work, we first elucidate the whole conformational landscape of GluT1 in the absence of glucose, using long molecular dynamics simulations and show that the transitions can be accomplished through thermal fluctuations. Importantly, we highlight a strong coupling between intracellular and extracellular domains of the protein that contributes to the transmembrane helices reorientation during the transition. The conformations adopted during the simulations differ from the known 3D bacterial homologs structures resolved in similar states. In holo state simulations, we find that glucose transits along the pathway through significant rotational motions, while maintaining hydrogen bonds with the protein. These persistent motions affect side chains orientation, which impacts protein mechanics and allows glucose progression.
葡萄糖在哺乳动物细胞代谢中起着至关重要的作用。在血液-脑屏障的红细胞和内皮细胞中,葡萄糖的摄取是由葡萄糖转运蛋白 1(GluT1)介导的。GluT1 的缺乏或突变会导致严重的生理紊乱。GluT1 也是癌症治疗的一个重要靶点,因为它在肿瘤细胞中过度表达。先前的研究表明,GluT1 通过构象变化的循环来介导溶质的转移。然而,转运体在转移过程中采用的相应 3D 结构仍然难以捉摸。在本工作中,我们首先使用长分子动力学模拟阐明了在没有葡萄糖的情况下 GluT1 的整个构象景观,并表明这些转变可以通过热波动来完成。重要的是,我们强调了蛋白质细胞内和细胞外结构域之间的强耦合,这有助于在转变过程中跨膜螺旋的重新取向。模拟中采用的构象与在类似状态下解析的已知 3D 细菌同源物结构不同。在完整状态的模拟中,我们发现葡萄糖沿着路径通过显著的旋转运动,同时与蛋白质保持氢键。这些持续的运动影响侧链的取向,从而影响蛋白质的力学,并允许葡萄糖的前进。