Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
CNRS, LCPO, UMR 5629, Univ. Bordeaux, Bordeaux INP, 33600, Pessac, France.
Microb Cell Fact. 2019 Feb 1;18(1):23. doi: 10.1186/s12934-019-1074-4.
Terpenes are industrially relevant natural compounds the biosynthesis of which relies on two well-established-mevalonic acid (MVA) and methyl erythritol phosphate (MEP)-pathways. Both pathways are widely distributed in all domains of life, the former is predominantly found in eukaryotes and archaea and the latter in eubacteria and chloroplasts. These two pathways supply isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the universal building blocks of terpenes.
The potential to establish a semisynthetic third pathway to access these precursors has been investigated in the present work. We have tested the ability of a collection of 93 isopentenyl phosphate kinases (IPK) from the biodiversity to catalyse the double phosphorylation of isopentenol and dimethylallyl alcohol to give, respectively IPP and DMAPP. Five IPKs selected from a preliminary in vitro screening were evaluated in vivo in an engineered chassis E. coli strain producing carotenoids. The recombinant pathway leading to the synthesis of neurosporene and lycopene, allows a simple colorimetric assay to test the potential of IPKs for the synthesis of IPP and DMAPP starting from the corresponding alcohols. The best candidate identified was the IPK from Methanococcoides burtonii (UniProt ID: Q12TH9) which improved carotenoid and neurosporene yields ~ 18-fold and > 45-fold, respectively. In our lab scale conditions, titres of neurosporene reached up to 702.1 ± 44.7 µg/g DCW and 966.2 ± 61.6 µg/L. A scale up to 4 L in-batch cultures reached to 604.8 ± 68.3 µg/g DCW and 430.5 ± 48.6 µg/L without any optimisation shown its potential for future applications. Neurosporene was almost the only carotenoid produced under these conditions, reaching ~ 90% of total carotenoids both at lab and batch scales thus offering an easy access to this sophisticated molecule.
IPK biodiversity was screened in order to identify IPKs that optimize the final carotenoid content of engineered E. coli cells expressing the lycopene biosynthesis pathway. By simply changing the IPK and without any other metabolic engineering we improved the neurosporene content by more than 45 fold offering a new biosynthetic access to this molecule of upmost importance.
萜类化合物是具有工业相关性的天然化合物,其生物合成依赖于两个成熟的甲羟戊酸(MVA)和甲基赤藓醇磷酸(MEP)途径。这两种途径广泛存在于所有生命领域,前者主要存在于真核生物和古菌中,后者存在于原核生物和叶绿体中。这两种途径提供异戊烯二磷酸(IPP)和二甲基烯丙基二磷酸(DMAPP),萜类化合物的通用结构单元。
本研究旨在探索建立半合成第三条途径来获得这些前体的可能性。我们测试了从生物多样性中收集的 93 种异戊烯磷酸激酶(IPK)的能力,以催化异戊烯醇和二甲基烯丙基醇的双重磷酸化,分别得到 IPP 和 DMAPP。从初步的体外筛选中选择的 5 种 IPK 在工程底盘大肠杆菌菌株中进行了评估,该菌株可产生类胡萝卜素。导致神经孢烯和番茄红素合成的重组途径允许进行简单的比色测定,以测试 IPK 从相应醇合成 IPP 和 DMAPP 的潜力。从 Methanococcoides burtonii(UniProt ID:Q12TH9)中鉴定出的最佳候选物将类胡萝卜素和神经孢烯的产量分别提高了约 18 倍和 45 倍以上。在我们的实验室规模条件下,神经孢烯的滴度达到 702.1±44.7μg/g DCW 和 966.2±61.6μg/L。在 4L 分批培养中,未经任何优化的情况下达到 604.8±68.3μg/g DCW 和 430.5±48.6μg/L,表明其具有未来应用的潜力。在这些条件下,几乎只产生神经孢烯,在实验室和分批规模上达到总类胡萝卜素的约 90%,因此为这种复杂分子提供了一种简单的获取途径。
筛选了 IPK 生物多样性,以鉴定优化表达番茄红素生物合成途径的工程大肠杆菌细胞最终类胡萝卜素含量的 IPK。通过简单地改变 IPK,而无需任何其他代谢工程,我们将神经孢烯的含量提高了 45 倍以上,为这种极其重要的分子提供了一种新的生物合成途径。