Suppr超能文献

结构化众包可实现组织学图像的卷积分割。

Structured crowdsourcing enables convolutional segmentation of histology images.

机构信息

Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.

Department of Pathology, National Cancer Institute, Cairo, Egypt.

出版信息

Bioinformatics. 2019 Sep 15;35(18):3461-3467. doi: 10.1093/bioinformatics/btz083.

Abstract

MOTIVATION

While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully delineate tissue structures, and difficulties related to sharing and markup of whole-slide images.

RESULTS

We recruited 25 participants, ranging in experience from senior pathologists to medical students, to delineate tissue regions in 151 breast cancer slides using the Digital Slide Archive. Inter-participant discordance was systematically evaluated, revealing low discordance for tumor and stroma, and higher discordance for more subjectively defined or rare tissue classes. Feedback provided by senior participants enabled the generation and curation of 20 000+ annotated tissue regions. Fully convolutional networks trained using these annotations were highly accurate (mean AUC=0.945), and the scale of annotation data provided notable improvements in image classification accuracy.

AVAILABILITY AND IMPLEMENTATION

Dataset is freely available at: https://goo.gl/cNM4EL.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

虽然深度学习算法在语义图像分割任务中表现出色,但需要大型注释数据集才能创建准确的模型。由于需要花费大量精力和经验来仔细描绘组织结构,以及与全切片图像的共享和标记相关的困难,因此对组织学图像进行注释具有挑战性。

结果

我们招募了 25 名参与者,他们的经验从资深病理学家到医学生不等,使用 Digital Slide Archive 对 151 张乳腺癌幻灯片中的组织区域进行描绘。系统地评估了参与者之间的分歧,发现肿瘤和基质的分歧较小,而更主观定义或罕见的组织类别的分歧较大。高级参与者提供的反馈信息有助于生成和管理 20000 多个带注释的组织区域。使用这些注释训练的全卷积网络具有很高的准确性(平均 AUC=0.945),并且注释数据的规模显著提高了图像分类的准确性。

可用性和实现

数据集可在以下网址免费获取:https://goo.gl/cNM4EL。

补充信息

补充数据可在生物信息学在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b0c/6748796/4d5006b2b1c9/btz083f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验