Suppr超能文献

代谢组学的μMAS NMR分析的当前进展

Current Developments in µMAS NMR Analysis for Metabolomics.

作者信息

Lucas-Torres Covadonga, Wong Alan

机构信息

NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France.

出版信息

Metabolites. 2019 Feb 6;9(2):29. doi: 10.3390/metabo9020029.

Abstract

Analysis of microscopic specimens has emerged as a useful analytical application in metabolomics because of its capacity for characterizing a highly homogenous sample with a specific interest. The undeviating analysis helps to unfold the hidden activities in a bulk specimen and contributes to the understanding of the fundamental metabolisms in life. In NMR spectroscopy, micro(µ)-probe technology is well-established and -adopted to the microscopic level of biofluids. However, this is quite the contrary with specimens such as tissue, cell and organism. This is due to the substantial difficulty of developing a sufficient µ-size magic-angle spinning (MAS) probe for sub-milligram specimens with the capability of high-quality data acquisition. It was not until 2012; a µMAS probe had emerged and shown promises to µg analysis; since, a continuous advancement has been made striving for the possibility of µMAS to be an effective NMR spectroscopic analysis. Herein, the mini-review highlights the progress of µMAS development-from an impossible scenario to an attainable solution-and describes a few demonstrative metabolic profiling studies. The review will also discuss the current challenges in µMAS NMR analysis and its potential to metabolomics.

摘要

由于能够对特定感兴趣的高度均匀样本进行表征,微观样本分析已成为代谢组学中一种有用的分析应用。这种直接的分析有助于揭示大量样本中隐藏的活动,并有助于理解生命中的基本代谢过程。在核磁共振波谱学中,微(µ)探头技术已成熟并应用于生物流体的微观层面。然而,对于组织、细胞和生物体等样本来说情况却大不相同。这是因为开发一种足够小尺寸的魔角旋转(MAS)探头用于亚毫克级样本并具备高质量数据采集能力存在很大困难。直到2012年,一种µMAS探头才出现并显示出对微克分析的前景;从那时起,人们不断取得进展,努力使µMAS成为一种有效的核磁共振波谱分析方法。在此,这篇小型综述重点介绍了µMAS从不可能实现的情况到可实现的解决方案的发展历程,并描述了一些具有示范意义的代谢谱研究。该综述还将讨论µMAS核磁共振分析当前面临的挑战及其在代谢组学中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9663/6410107/afaf6ed1b59b/metabolites-09-00029-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验