Suppr超能文献

模拟脑网络模型与经验性静息态数据的动态特性。

Dynamic properties of simulated brain network models and empirical resting-state data.

作者信息

Kashyap Amrit, Keilholz Shella

机构信息

Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, USA.

出版信息

Netw Neurosci. 2019 Feb 1;3(2):405-426. doi: 10.1162/netn_a_00070. eCollection 2019.

Abstract

Brain network models (BNMs) have become a promising theoretical framework for simulating signals that are representative of whole-brain activity such as resting-state fMRI. However, it has been difficult to compare the complex brain activity obtained from simulations to empirical data. Previous studies have used simple metrics to characterize coordination between regions such as functional connectivity. We extend this by applying various different dynamic analysis tools that are currently used to understand empirical resting-state fMRI (rs-fMRI) to the simulated data. We show that certain properties correspond to the structural connectivity input that is shared between the models, and certain dynamic properties relate more to the mathematical description of the brain network model. We conclude that the dynamic properties that explicitly examine patterns of signal as a function of time rather than spatial coordination between different brain regions in the rs-fMRI signal seem to provide the largest contrasts between different BNMs and the unknown empirical dynamical system. Our results will be useful in constraining and developing more realistic simulations of whole-brain activity.

摘要

脑网络模型(BNMs)已成为一种很有前景的理论框架,用于模拟代表全脑活动的信号,如静息态功能磁共振成像(resting-state fMRI)。然而,将模拟得到的复杂脑活动与实证数据进行比较一直很困难。先前的研究使用简单指标来表征区域间的协调,如功能连接。我们通过将目前用于理解实证静息态功能磁共振成像(rs-fMRI)的各种不同动态分析工具应用于模拟数据来扩展这一方法。我们表明,某些属性对应于模型之间共享的结构连接输入,而某些动态属性与脑网络模型的数学描述关系更大。我们得出结论,在rs-fMRI信号中,明确将信号模式作为时间函数而非不同脑区之间的空间协调来检查的动态属性,似乎在不同的BNMs与未知的实证动态系统之间提供了最大的差异。我们的结果将有助于约束和开发更逼真的全脑活动模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c393/6370489/a4fe1093eecc/netn-03-405-g001.jpg

相似文献

引用本文的文献

5
Connectivity analyses for task-based fMRI.基于任务的 fMRI 的连通性分析。
Phys Life Rev. 2024 Jul;49:139-156. doi: 10.1016/j.plrev.2024.04.012. Epub 2024 Apr 30.
7
Geometric constraints on human brain function.人类大脑功能的几何约束。
Nature. 2023 Jun;618(7965):566-574. doi: 10.1038/s41586-023-06098-1. Epub 2023 May 31.

本文引用的文献

7
Dynamic models of large-scale brain activity.大规模脑活动的动态模型。
Nat Neurosci. 2017 Feb 23;20(3):340-352. doi: 10.1038/nn.4497.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验