Suppr超能文献

深度学习与泌尿生殖放射科医师在使用 3T 多参数磁共振成像检测前列腺癌中的表现。

Performance of Deep Learning and Genitourinary Radiologists in Detection of Prostate Cancer Using 3-T Multiparametric Magnetic Resonance Imaging.

机构信息

Department of Bioengineering, UC Berkeley, Berkeley, California, USA.

Department of Radiation Oncology, UT Southwestern, Dallas, Texas, USA.

出版信息

J Magn Reson Imaging. 2021 Aug;54(2):474-483. doi: 10.1002/jmri.27595. Epub 2021 Mar 12.

Abstract

BACKGROUND

Several deep learning-based techniques have been developed for prostate cancer (PCa) detection using multiparametric magnetic resonance imaging (mpMRI), but few of them have been rigorously evaluated relative to radiologists' performance or whole-mount histopathology (WMHP).

PURPOSE

To compare the performance of a previously proposed deep learning algorithm, FocalNet, and expert radiologists in the detection of PCa on mpMRI with WMHP as the reference.

STUDY TYPE

Retrospective, single-center study.

SUBJECTS

A total of 553 patients (development cohort: 427 patients; evaluation cohort: 126 patients) who underwent 3-T mpMRI prior to radical prostatectomy from October 2010 to February 2018.

FIELD STRENGTH/SEQUENCE: 3-T, T2-weighted imaging and diffusion-weighted imaging.

ASSESSMENT

FocalNet was trained on the development cohort to predict PCa locations by detection points, with a confidence value for each point, on the evaluation cohort. Four fellowship-trained genitourinary (GU) radiologists independently evaluated the evaluation cohort to detect suspicious PCa foci, annotate detection point locations, and assign a five-point suspicion score (1: least suspicious, 5: most suspicious) for each annotated detection point. The PCa detection performance of FocalNet and radiologists were evaluated by the lesion detection sensitivity vs. the number of false-positive detections at different thresholds on suspicion scores. Clinically significant lesions: Gleason Group (GG) ≥ 2 or pathological size ≥ 10 mm. Index lesions: the highest GG and the largest pathological size (secondary).

STATISTICAL TESTS

Bootstrap hypothesis test for the detection sensitivity between radiologists and FocalNet.

RESULTS

For the overall differential detection sensitivity, FocalNet was 5.1% and 4.7% below the radiologists for clinically significant and index lesions, respectively; however, the differences were not statistically significant (P = 0.413 and P = 0.282, respectively).

DATA CONCLUSION

FocalNet achieved slightly lower but not statistically significant PCa detection performance compared with GU radiologists. Compared with radiologists, FocalNet demonstrated similar detection performance for a highly sensitive setting (suspicion score ≥ 1) or a highly specific setting (suspicion score = 5), while lower performance in between.

LEVEL OF EVIDENCE

3 TECHNICAL EFFICACY STAGE: 2.

摘要

背景

已经开发出了几种基于深度学习的技术,用于使用多参数磁共振成像(mpMRI)检测前列腺癌(PCa),但其中很少有技术能够与放射科医生的表现或全组织切片病理(WMHP)进行严格的比较。

目的

比较一种先前提出的深度学习算法 FocalNet 与放射科医生在使用 WMHP 作为参考的情况下,对 mpMRI 上的 PCa 检测性能。

研究类型

回顾性、单中心研究。

受试者

2010 年 10 月至 2018 年 2 月期间,在接受根治性前列腺切除术之前,共有 553 名患者(发展队列:427 名患者;评估队列:126 名患者)接受了 3TmpMRI 检查。

磁场强度/序列:3T、T2 加权成像和扩散加权成像。

评估

FocalNet 在发展队列上进行了训练,以通过置信值为每个点预测 PCa 位置,然后在评估队列上进行预测。四名经过专科培训的泌尿生殖(GU)放射科医生独立评估了评估队列,以检测可疑的 PCa 病灶,标记检测点的位置,并为每个标记的检测点分配五点可疑评分(1:最可疑,5:最可疑)。通过在不同可疑评分阈值下,对假阳性检测数量与病变检测灵敏度进行比较,评估 FocalNet 和放射科医生的 PCa 检测性能。临床显著病变:Gleason 分组(GG)≥2 或病理大小≥10mm。可疑病变:GG 最高和病理大小最大的病变(次要)。

统计检验

放射科医生和 FocalNet 之间检测灵敏度的自举假设检验。

结果

在整体差异检测灵敏度方面,FocalNet 分别比放射科医生低 5.1%和 4.7%,用于临床显著病变和可疑病变;然而,差异无统计学意义(P=0.413 和 P=0.282)。

数据结论

与 GU 放射科医生相比,FocalNet 的 PCa 检测性能略低,但无统计学意义。与放射科医生相比,FocalNet 在高度敏感设置(可疑评分≥1)或高度特异性设置(可疑评分=5)下表现出相似的检测性能,而在两者之间的性能较低。

证据水平

3 技术功效等级:2。

相似文献

2
Understanding Spatial Correlation Between Multiparametric MRI Performance and Prostate Cancer.
J Magn Reson Imaging. 2024 Nov;60(5):2184-2195. doi: 10.1002/jmri.29287. Epub 2024 Feb 12.
3
Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet.
IEEE Trans Med Imaging. 2019 Nov;38(11):2496-2506. doi: 10.1109/TMI.2019.2901928. Epub 2019 Feb 27.

引用本文的文献

1
Integration of magnetic resonance imaging and deep learning for prostate cancer detection: a systematic review.
Am J Clin Exp Urol. 2025 Apr 25;13(2):69-91. doi: 10.62347/CSIJ8326. eCollection 2025.
3
Evaluation of a deep learning prostate cancer detection system on biparametric MRI against radiological reading.
Eur Radiol. 2025 Jun;35(6):3134-3143. doi: 10.1007/s00330-024-11287-1. Epub 2024 Dec 19.
5
6
AtPCa-Net: anatomical-aware prostate cancer detection network on multi-parametric MRI.
Sci Rep. 2024 Mar 8;14(1):5740. doi: 10.1038/s41598-024-56405-7.
9
Semisupervised Learning with Report-guided Pseudo Labels for Deep Learning-based Prostate Cancer Detection Using Biparametric MRI.
Radiol Artif Intell. 2023 Jul 26;5(5):e230031. doi: 10.1148/ryai.230031. eCollection 2023 Sep.
10
Artificial Intelligence in Urooncology: What We Have and What We Expect.
Cancers (Basel). 2023 Aug 26;15(17):4282. doi: 10.3390/cancers15174282.

本文引用的文献

1
Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs.
Radiology. 2020 Jan;294(1):199-209. doi: 10.1148/radiol.2019182465. Epub 2019 Nov 12.
2
Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment.
Radiology. 2019 Dec;293(3):607-617. doi: 10.1148/radiol.2019190938. Epub 2019 Oct 8.
4
PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images.
J Med Imaging (Bellingham). 2018 Oct;5(4):044501. doi: 10.1117/1.JMI.5.4.044501. Epub 2018 Nov 10.
5
Prostate cancer detection from multi-institution multiparametric MRIs using deep convolutional neural networks.
J Med Imaging (Bellingham). 2018 Oct;5(4):044507. doi: 10.1117/1.JMI.5.4.044507. Epub 2018 Dec 15.
6
Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet.
IEEE Trans Med Imaging. 2019 Nov;38(11):2496-2506. doi: 10.1109/TMI.2019.2901928. Epub 2019 Feb 27.
7
Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI.
Abdom Radiol (NY). 2019 Jun;44(6):2030-2039. doi: 10.1007/s00261-018-1824-5.
8
Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values.
Radiology. 2018 Oct;289(1):128-137. doi: 10.1148/radiol.2018173064. Epub 2018 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验