Department of Bioengineering, UC Berkeley, Berkeley, California, USA.
Department of Radiation Oncology, UT Southwestern, Dallas, Texas, USA.
J Magn Reson Imaging. 2021 Aug;54(2):474-483. doi: 10.1002/jmri.27595. Epub 2021 Mar 12.
Several deep learning-based techniques have been developed for prostate cancer (PCa) detection using multiparametric magnetic resonance imaging (mpMRI), but few of them have been rigorously evaluated relative to radiologists' performance or whole-mount histopathology (WMHP).
To compare the performance of a previously proposed deep learning algorithm, FocalNet, and expert radiologists in the detection of PCa on mpMRI with WMHP as the reference.
Retrospective, single-center study.
A total of 553 patients (development cohort: 427 patients; evaluation cohort: 126 patients) who underwent 3-T mpMRI prior to radical prostatectomy from October 2010 to February 2018.
FIELD STRENGTH/SEQUENCE: 3-T, T2-weighted imaging and diffusion-weighted imaging.
FocalNet was trained on the development cohort to predict PCa locations by detection points, with a confidence value for each point, on the evaluation cohort. Four fellowship-trained genitourinary (GU) radiologists independently evaluated the evaluation cohort to detect suspicious PCa foci, annotate detection point locations, and assign a five-point suspicion score (1: least suspicious, 5: most suspicious) for each annotated detection point. The PCa detection performance of FocalNet and radiologists were evaluated by the lesion detection sensitivity vs. the number of false-positive detections at different thresholds on suspicion scores. Clinically significant lesions: Gleason Group (GG) ≥ 2 or pathological size ≥ 10 mm. Index lesions: the highest GG and the largest pathological size (secondary).
Bootstrap hypothesis test for the detection sensitivity between radiologists and FocalNet.
For the overall differential detection sensitivity, FocalNet was 5.1% and 4.7% below the radiologists for clinically significant and index lesions, respectively; however, the differences were not statistically significant (P = 0.413 and P = 0.282, respectively).
FocalNet achieved slightly lower but not statistically significant PCa detection performance compared with GU radiologists. Compared with radiologists, FocalNet demonstrated similar detection performance for a highly sensitive setting (suspicion score ≥ 1) or a highly specific setting (suspicion score = 5), while lower performance in between.
3 TECHNICAL EFFICACY STAGE: 2.
已经开发出了几种基于深度学习的技术,用于使用多参数磁共振成像(mpMRI)检测前列腺癌(PCa),但其中很少有技术能够与放射科医生的表现或全组织切片病理(WMHP)进行严格的比较。
比较一种先前提出的深度学习算法 FocalNet 与放射科医生在使用 WMHP 作为参考的情况下,对 mpMRI 上的 PCa 检测性能。
回顾性、单中心研究。
2010 年 10 月至 2018 年 2 月期间,在接受根治性前列腺切除术之前,共有 553 名患者(发展队列:427 名患者;评估队列:126 名患者)接受了 3TmpMRI 检查。
磁场强度/序列:3T、T2 加权成像和扩散加权成像。
FocalNet 在发展队列上进行了训练,以通过置信值为每个点预测 PCa 位置,然后在评估队列上进行预测。四名经过专科培训的泌尿生殖(GU)放射科医生独立评估了评估队列,以检测可疑的 PCa 病灶,标记检测点的位置,并为每个标记的检测点分配五点可疑评分(1:最可疑,5:最可疑)。通过在不同可疑评分阈值下,对假阳性检测数量与病变检测灵敏度进行比较,评估 FocalNet 和放射科医生的 PCa 检测性能。临床显著病变:Gleason 分组(GG)≥2 或病理大小≥10mm。可疑病变:GG 最高和病理大小最大的病变(次要)。
放射科医生和 FocalNet 之间检测灵敏度的自举假设检验。
在整体差异检测灵敏度方面,FocalNet 分别比放射科医生低 5.1%和 4.7%,用于临床显著病变和可疑病变;然而,差异无统计学意义(P=0.413 和 P=0.282)。
与 GU 放射科医生相比,FocalNet 的 PCa 检测性能略低,但无统计学意义。与放射科医生相比,FocalNet 在高度敏感设置(可疑评分≥1)或高度特异性设置(可疑评分=5)下表现出相似的检测性能,而在两者之间的性能较低。
3 技术功效等级:2。