Benkoulouche Mounir, Fauré Régis, Remaud-Siméon Magali, Moulis Claire, André Isabelle
Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France.
Interface Focus. 2019 Apr 6;9(2):20180069. doi: 10.1098/rsfs.2018.0069. Epub 2019 Feb 15.
Combined with chemical synthesis, the use of glycoenzyme biocatalysts has shown great synthetic potential over recent decades owing to their remarkable versatility in terms of substrates and regio- and stereoselectivity that allow structurally controlled synthesis of carbohydrates and glycoconjugates. Nonetheless, the lack of appropriate enzymatic tools with requisite properties in the natural diversity has hampered extensive exploration of enzyme-based synthetic routes to access relevant bioactive oligosaccharides, such as cell-surface glycans or prebiotics. With the remarkable progress in enzyme engineering, it has become possible to improve catalytic efficiency and physico-chemical properties of enzymes but also considerably extend the repertoire of accessible catalytic reactions and tailor novel substrate specificities. In this review, we intend to give a brief overview of the advantageous use of engineered glycoenzymes, sometimes in combination with chemical steps, for the synthesis of natural bioactive oligosaccharides or their precursors. The focus will be on examples resulting from the three main classes of glycoenzymes specialized in carbohydrate synthesis: glycosyltransferases, glycoside hydrolases and glycoside phosphorylases.
在过去几十年里,糖酶生物催化剂与化学合成相结合,由于其在底物以及区域和立体选择性方面具有显著的通用性,能够实现对碳水化合物和糖缀合物的结构可控合成,因而展现出巨大的合成潜力。然而,在自然界的多样性中缺乏具有所需特性的合适酶工具,这阻碍了人们对基于酶的合成路线进行广泛探索,以获取相关的生物活性寡糖,如细胞表面聚糖或益生元。随着酶工程的显著进展,不仅有可能提高酶的催化效率和物理化学性质,还能大幅扩展可进行的催化反应范围并定制新的底物特异性。在这篇综述中,我们打算简要概述工程化糖酶(有时与化学步骤相结合)在合成天然生物活性寡糖或其前体方面的优势应用。重点将放在专门用于碳水化合物合成的三类主要糖酶的实例上:糖基转移酶、糖苷水解酶和糖苷磷酸化酶。