Suppr超能文献

用于脑组织光纤光度法的三维信号采集场

The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue.

作者信息

Pisanello Marco, Pisano Filippo, Hyun Minsuk, Maglie Emanuela, Balena Antonio, De Vittorio Massimo, Sabatini Bernardo L, Pisanello Ferruccio

机构信息

Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy.

Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States.

出版信息

Front Neurosci. 2019 Feb 26;13:82. doi: 10.3389/fnins.2019.00082. eCollection 2019.

Abstract

Fiber photometry is used to monitor signals from fluorescent indicators in genetically-defined neural populations in behaving animals. Recently, fiber photometry has rapidly expanded and it now provides researchers with increasingly powerful means to record neural dynamics and neuromodulatory action. However, it is not clear how to select the optimal fiber optic given the constraints and goals of a particular experiment. Here, using combined confocal/2-photon microscope, we quantitatively characterize the fluorescence collection properties of various optical fibers in brain tissue. We show that the fiber size plays a major role in defining the volume of the optically sampled brain region, whereas numerical aperture impacts the total amount of collected signal and, marginally, the shape and size of the collection volume. We show that ~80% of the effective signal arises from 10 to 10 μm volume extending ~200 μm from the fiber facet for 200 μm core optical fibers. Together with analytical and ray tracing collection maps, our results reveal the light collection properties of different optical fibers in brain tissue, allowing for an accurate selection of the fibers for photometry and helping for a more precise interpretation of measurements in terms of sampled volume.

摘要

光纤光度法用于监测行为动物中基因定义的神经群体中荧光指示剂发出的信号。最近,光纤光度法迅速发展,现在为研究人员提供了越来越强大的手段来记录神经动力学和神经调节作用。然而,鉴于特定实验的限制和目标,尚不清楚如何选择最佳光纤。在这里,我们使用共聚焦/双光子显微镜组合,定量表征了各种光纤在脑组织中的荧光收集特性。我们表明,光纤尺寸在定义光学采样脑区的体积方面起主要作用,而数值孔径影响收集信号的总量,并在一定程度上影响收集体积的形状和大小。我们表明,对于200μm芯光纤,约80%的有效信号来自距光纤端面约200μm处延伸10至10μm的体积。结合分析和光线追踪收集图,我们的结果揭示了不同光纤在脑组织中的光收集特性,有助于准确选择用于光度测量的光纤,并有助于根据采样体积更精确地解释测量结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f247/6399578/f357ca3e4297/fnins-13-00082-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验