Suppr超能文献

利用采集的智能手机语音数据对帕金森病进行稳健检测:一种远程医疗方法。

Robust Detection of Parkinson's Disease Using Harvested Smartphone Voice Data: A Telemedicine Approach.

作者信息

Singh Sanjana, Xu Wenyao

机构信息

McLean High School, McLean, Virginia.

Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, New York.

出版信息

Telemed J E Health. 2020 Mar;26(3):327-334. doi: 10.1089/tmj.2018.0271. Epub 2019 Apr 26.

Abstract

Parkinson's disease affects over 10 million people globally, and ∼20% of patients with Parkinson's disease have not been diagnosed as such. The clinical diagnosis is costly: there are no specific tests or biomarkers and it can take days to diagnose as it relies on a holistic evaluation of the individual's symptoms. Existing research either predicts a Unified Parkinson Disease Rating Scale rating, uses other key Parkinsonian features such as tapping, gait, and tremor to diagnose an individual, or focuses on different audio features. In this article, we present a classification approach implemented as an iOS App to detect whether an individual has Parkinson's using 10-s audio clips of the individual saying "aaah" into a smartphone. The 1,000 voice samples analyzed were obtained from the mPower (mobile Parkinson Disease) study, which collected 65,022 voice samples from 5,826 unique participants. The experimental results comparing 12 different methods indicate that our approach achieves 99.0% accuracy in under a second, which significantly outperforms both prior diagnosis methods in the accuracy achieved and the efficiency of clinical diagnoses.

摘要

帕金森病在全球影响着超过1000万人,约20%的帕金森病患者尚未得到确诊。临床诊断成本高昂:没有特定的检测方法或生物标志物,且由于依赖对个体症状的全面评估,诊断可能需要数天时间。现有研究要么预测统一帕金森病评定量表评分,利用诸如轻敲、步态和震颤等其他关键帕金森病特征来诊断个体,要么专注于不同的音频特征。在本文中,我们提出一种作为iOS应用程序实现的分类方法,通过让个体对着智能手机说出“啊”的10秒音频片段来检测其是否患有帕金森病。所分析的1000个语音样本来自mPower(移动帕金森病)研究,该研究从5826名独特参与者那里收集了65022个语音样本。对比12种不同方法的实验结果表明,我们的方法在不到一秒的时间内实现了99.0%的准确率,在准确率和临床诊断效率方面均显著优于先前的诊断方法。

相似文献

9
The use of wearables for the diagnosis and treatment of Parkinson's disease.可穿戴设备在帕金森病诊断和治疗中的应用。
J Neural Transm (Vienna). 2023 Jun;130(6):783-791. doi: 10.1007/s00702-022-02575-5. Epub 2023 Jan 7.

引用本文的文献

9
Parkinson's Disease and Wearable Technology: An Indian Perspective.帕金森病与可穿戴技术:印度视角
Ann Indian Acad Neurol. 2022 Sep-Oct;25(5):817-820. doi: 10.4103/aian.aian_653_22. Epub 2022 Oct 31.

本文引用的文献

2
A Smartphone-Based Tool for Assessing Parkinsonian Hand Tremor.基于智能手机的帕金森病手震颤评估工具。
IEEE J Biomed Health Inform. 2015 Nov;19(6):1835-42. doi: 10.1109/JBHI.2015.2471093. Epub 2015 Aug 20.
9
Predicting severity of Parkinson's disease from speech.通过语音预测帕金森病的严重程度。
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5201-4. doi: 10.1109/IEMBS.2010.5626104.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验