Suppr超能文献

从置信度评分中对信号检测模型进行简约估计。

Parsimonious estimation of signal detection models from confidence ratings.

机构信息

Department of Psychological Methods, University of Amsterdam, Postbus 15906, 1001, NK, Amsterdam, The Netherlands.

Syracuse University, Syracuse, NY, USA.

出版信息

Behav Res Methods. 2019 Oct;51(5):1953-1967. doi: 10.3758/s13428-019-01231-3.

Abstract

Signal detection theory (SDT) is used to quantify people's ability and bias in discriminating stimuli. The ability to detect a stimulus is often measured through confidence ratings. In SDT models, the use of confidence ratings necessitates the estimation of confidence category thresholds, a requirement that can easily result in models that are overly complex. As a parsimonious alternative, we propose a threshold SDT model that estimates these category thresholds using only two parameters. We fit the model to data from Pratte et al. (Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 224-232 2010) and illustrate its benefits over previous threshold SDT models.

摘要

信号检测理论(SDT)用于量化人们区分刺激的能力和偏差。通常通过置信度评分来衡量检测刺激的能力。在 SDT 模型中,置信度评分的使用需要估计置信度类别阈值,这一要求很容易导致模型过于复杂。作为一种简约的替代方法,我们提出了一种使用仅两个参数估计这些类别阈值的阈值 SDT 模型。我们将该模型拟合到 Pratte 等人的数据中(《实验心理学杂志:学习、记忆和认知》,36,224-232,2010),并说明了其相对于以前的阈值 SDT 模型的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da2d/6797662/310c69aafc94/13428_2019_1231_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验