Suppr超能文献

高油和低油的比较转录组分析揭示了高油酸积累过程中上游和下游多基因调控的协同机制。

Comparative transcriptomic analysis of high- and low-oil reveals a coordinated mechanism for the regulation of upstream and downstream multigenes for high oleic acid accumulation.

作者信息

Wu Bo, Ruan Chengjiang, Han Ping, Ruan Dong, Xiong ChaoWei, Ding Jian, Liu Sihei

机构信息

1Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, No. 18 Liaohe West Road, Dalian, 116600 Liaoning China.

Tongren Engineering Research Center for Oiltea Camellia, Yuping, 554000 China.

出版信息

3 Biotech. 2019 Jul;9(7):257. doi: 10.1007/s13205-019-1792-7. Epub 2019 Jun 8.

Abstract

Tea oil camellia () is an important woody oil tree in southern China. However, little is known regarding the molecular mechanisms that contribute to high oleic acid accumulation in tea oil camellia. Herein, we measured the oil content and fatty acid compositions of high- and low-oil tea oil camellia seeds and investigated the global gene expression profiles by RNA-seq. The results showed that at the early, second and third seed developmental stages, a total of 64, 253, and 124 genes, respectively, were significantly differentially expressed between the high- and low-oil cultivars. Gene ontology (GO) enrichment analysis of the identified differentially expressed transcription factors (TFs; ABI3, FUS3, LEC1, WRI1, TTG2 and DOF4.6) revealed some critical GO terms associated with oil biosynthesis and fatty acid accumulation, including glycolysis, zinc ion binding, positive regulation of fatty acid biosynthetic process, triglyceride biosynthetic process, seed coat development, abscisic acid-mediated signaling pathway and embryo development. Comprehensive comparisons of transcriptomic profiles and expression analysis of multigenes based on qRT-PCR showed that coordinated high expression of the upstream genes , and directly increased the relative levels of C16:0-ACP, which provided enough precursor resources for oleic acid biosynthesis. Continuous high expression of the gene accelerated oleic acid synthesis and accumulation, and coordinated low expression of the downstream genes and decreased the consumption of oleic acid for conversion. The coordinated regulation of these multigenes ensures the high accumulation of oleic acid in the seeds of tea oil camellia. Our data represent a comprehensive transcriptomic study of high- and low-oil tea oil camellia, not only increasing the number of sequences associated with lipid biosynthesis and fatty acid accumulation in public resource databases but also providing a scientific basis for genetic improvement of the oleic acid content in woody oil trees.

摘要

油茶()是中国南方重要的木本油料树种。然而,关于油茶中高油酸积累的分子机制知之甚少。在此,我们测定了高油和低油油茶种子的油含量和脂肪酸组成,并通过RNA测序研究了整体基因表达谱。结果表明,在种子发育的早期、中期和后期,高油和低油品种之间分别共有64、253和124个基因显著差异表达。对鉴定出的差异表达转录因子(ABI3、FUS3、LEC1、WRI1、TTG2和DOF4.6)进行基因本体(GO)富集分析,揭示了一些与油脂生物合成和脂肪酸积累相关的关键GO术语,包括糖酵解、锌离子结合、脂肪酸生物合成过程的正调控、甘油三酯生物合成过程、种皮发育、脱落酸介导的信号通路和胚胎发育。转录组图谱的综合比较以及基于qRT-PCR的多基因表达分析表明,上游基因、和的协同高表达直接增加了C16:0-ACP的相对水平,为油酸生物合成提供了足够的前体资源。基因的持续高表达加速了油酸的合成和积累,下游基因和的协同低表达减少了油酸转化的消耗。这些多基因的协同调控确保了油茶种子中油酸的高积累。我们的数据代表了对高油和低油油茶的全面转录组研究,不仅增加了公共资源数据库中与脂质生物合成和脂肪酸积累相关的序列数量,还为木本油料树种油酸含量的遗传改良提供了科学依据。

相似文献

4
Comparative Transcriptomic and Lipidomic Analysis of Fatty Acid Accumulation in Three Varieties During Seed Maturing.
J Agric Food Chem. 2024 Aug 14;72(32):18257-18270. doi: 10.1021/acs.jafc.4c03614. Epub 2024 Jul 31.
9
Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.
PLoS One. 2014 Aug 19;9(8):e104150. doi: 10.1371/journal.pone.0104150. eCollection 2014.
10
Full-Length Transcriptome from Seed Provides Insight into the Transcript Variants Involved in Oil Biosynthesis.
J Agric Food Chem. 2020 Dec 9;68(49):14670-14683. doi: 10.1021/acs.jafc.0c05381. Epub 2020 Nov 29.

引用本文的文献

5
Genome-Wide Analyses of MADS-Box Genes Reveal Their Involvement in Seed Development and Oil Accumulation of Tea-Oil Tree ().
Int J Genomics. 2024 Jul 29;2024:3375173. doi: 10.1155/2024/3375173. eCollection 2024.
6
Comparative Transcriptomic and Lipidomic Analysis of Fatty Acid Accumulation in Three Varieties During Seed Maturing.
J Agric Food Chem. 2024 Aug 14;72(32):18257-18270. doi: 10.1021/acs.jafc.4c03614. Epub 2024 Jul 31.
7
Identification of genes associated with fatty acid biosynthesis based on 214 safflower core germplasm.
BMC Genomics. 2023 Dec 11;24(1):763. doi: 10.1186/s12864-023-09874-5.
9
Genomic and genetic advances of oiltea-camellia ().
Front Plant Sci. 2023 Apr 3;14:1101766. doi: 10.3389/fpls.2023.1101766. eCollection 2023.
10
Regulation of seed oil accumulation by lncRNAs in Brassica napus.
Biotechnol Biofuels Bioprod. 2023 Feb 10;16(1):22. doi: 10.1186/s13068-022-02256-1.

本文引用的文献

3
Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes.
PLoS One. 2017 Jul 31;12(7):e0181835. doi: 10.1371/journal.pone.0181835. eCollection 2017.
6
Integration of omics approaches to understand oil/protein content during seed development in oilseed crops.
Plant Cell Rep. 2017 May;36(5):637-652. doi: 10.1007/s00299-016-2064-1. Epub 2016 Oct 27.
7
Transcriptomic Analysis of Tea Plant Responding to Drought Stress and Recovery.
PLoS One. 2016 Jan 20;11(1):e0147306. doi: 10.1371/journal.pone.0147306. eCollection 2016.
9
Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries.
Food Chem. 2016 Jan 1;190:566-571. doi: 10.1016/j.foodchem.2015.06.008. Epub 2015 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验