Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.
School of Psychological Sciences and Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia.
Sci Rep. 2019 Jul 29;9(1):11001. doi: 10.1038/s41598-019-47311-4.
A neural network model was previously developed to predict melatonin rhythms accurately from blue light and skin temperature recordings in individuals on a fixed sleep schedule. This study aimed to test the generalizability of the model to other sleep schedules, including rotating shift work. Ambulatory wrist blue light irradiance and skin temperature data were collected in 16 healthy individuals on fixed and habitual sleep schedules, and 28 rotating shift workers. Artificial neural network models were trained to predict the circadian rhythm of (i) salivary melatonin on a fixed sleep schedule; (ii) urinary aMT6s on both fixed and habitual sleep schedules, including shift workers on a diurnal schedule; and (iii) urinary aMT6s in rotating shift workers on a night shift schedule. To determine predicted circadian phase, center of gravity of the fitted bimodal skewed baseline cosine curve was used for melatonin, and acrophase of the cosine curve for aMT6s. On a fixed sleep schedule, the model predicted melatonin phase to within ± 1 hour in 67% and ± 1.5 hours in 100% of participants, with mean absolute error of 41 ± 32 minutes. On diurnal schedules, including shift workers, the model predicted aMT6s acrophase to within ± 1 hour in 66% and ± 2 hours in 87% of participants, with mean absolute error of 63 ± 67 minutes. On night shift schedules, the model predicted aMT6s acrophase to within ± 1 hour in 42% and ± 2 hours in 53% of participants, with mean absolute error of 143 ± 155 minutes. Prediction accuracy was similar when using either 1 (wrist) or 11 skin temperature sensor inputs. These findings demonstrate that the model can predict circadian timing to within ± 2 hours for the vast majority of individuals on diurnal schedules, using blue light and a single temperature sensor. However, this approach did not generalize to night shift conditions.
先前开发了一种神经网络模型,可根据固定睡眠时间的个体的蓝光和皮肤温度记录准确预测褪黑素节律。本研究旨在测试该模型在其他睡眠时间表(包括轮班工作)中的通用性。在固定和习惯性睡眠时间表下,收集了 16 名健康个体的可移动手腕蓝光辐照度和皮肤温度数据,以及 28 名轮班工人的数据。人工神经网络模型被训练来预测(i)在固定睡眠时间表下唾液褪黑素的昼夜节律;(ii)在固定和习惯性睡眠时间表下的尿液 aMT6s,包括白天时间表下的轮班工人;以及(iii)在夜间时间表下的轮班工人的尿液 aMT6s。为了确定预测的昼夜节律相位,使用拟合的双峰倾斜余弦曲线的重心来表示褪黑素,使用余弦曲线的峰值相位来表示 aMT6s。在固定睡眠时间表下,该模型在 67%的参与者中预测褪黑素相位在±1 小时内,在 100%的参与者中预测褪黑素相位在±1.5 小时内,平均绝对误差为 41±32 分钟。在包括轮班工人的白天时间表中,该模型在 66%的参与者中预测 aMT6s 峰值相位在±1 小时内,在 87%的参与者中预测 aMT6s 峰值相位在±2 小时内,平均绝对误差为 63±67 分钟。在夜班时间表中,该模型在 42%的参与者中预测 aMT6s 峰值相位在±1 小时内,在 53%的参与者中预测 aMT6s 峰值相位在±2 小时内,平均绝对误差为 143±155 分钟。当使用 1 个(手腕)或 11 个皮肤温度传感器输入时,预测精度相似。这些发现表明,该模型可以在白天时间表下,使用蓝光和单个温度传感器,在绝大多数个体中预测昼夜节律时间,精度在±2 小时内。然而,这种方法不适用于夜班条件。